中文核心期刊
CSCD来源期刊
中国科技核心期刊
RCCSE中国核心学术期刊

重庆交通大学学报(自然科学版) ›› 2016, Vol. 35 ›› Issue (3): 11-16.DOI: 10.3969/j.issn.1674-0696.2016.03.03

• 桥梁与隧道工程 • 上一篇    下一篇

基于自适应EEMD和盲辨识算法的桥梁结构模态参数识别

陈 永 高   

  1. (浙江工业职业技术学院,浙江 绍兴 312000)
  • 收稿日期:2015-06-17 修回日期:2015-10-09 出版日期:2016-06-20 发布日期:2016-06-20
  • 作者简介:第一作者:陈永高(1984—),男,江苏盐城人,工程师,主要从事土木工程建造与管理方面的研究。E-mail:higaoge@163.com。
  • 基金资助:
    浙江省教育厅科研项目(Y201432555);浙江省住建厅科研项目(2014ZI26);绍兴市科技计划项目(2014B70003)

Modal Parameter Identification of Bridge Structure Based on Adaptive EEMD and Blind Identification Algorithm

CHEN Yonggao   

  1. (Zhejiang Industry Polytechnic College, Shaoxing 312000, Zhejiang, P.R.China)
  • Received:2015-06-17 Revised:2015-10-09 Online:2016-06-20 Published:2016-06-20

摘要: 基于集合经验模态分解(EEMD)在信号的预处理上的不足之处,提出了一种基于自适应EEMD分解的盲源分离算法,即:先根据原始信号自身的特点确定加入白噪声的幅值标准差和集成次数,再进行EEMD分解,对所得IMF分量进行模糊综合评价以选出有效的IMF分量,构造IMF分量矩阵,最后利用盲源分离算法对其进行盲辨识,完成对信号的分解与重构。分别通过模拟信号和桥梁实测振动信号对该算法进行验证。结果表明:所提算法具有可行性,且能运用于实际结构信号的预处理。

关键词: 桥梁工程, 自适应EEMD, 盲辨识, 模糊综合评价法, 参数识别

Abstract: Due to the defects of ensemble empirical mode decomposition (EEMD) in signal pretreatment, a blind source separation algorithm based on adaptive EEMD decomposition was proposed, that was: firstly, the amplitude standard deviation and integration times of the added white noise were confirmed according to the characteristics of the original signal, and then a EEMD decomposition was carried out; secondly, a fuzzy comprehensive evaluation on the obtained IMF components was carried out to select out the effective components of the IMF, and then IMF component matrix was established; finally, blind source separation algorithm was used for blind identification, and the signal decomposition and reconstruction was completed. The proposed algorithm was verified by analog signal and measuring vibration signal of bridges respectively. The results show that the proposed algorithm is feasible and can be applied to the signal preprocessing of actual structure.

Key words: bridge engineering, adaptive EEMD, blind identification, fuzzy comprehensive evaluation, parameter identification

中图分类号: