中文核心期刊
CSCD来源期刊
中国科技核心期刊
RCCSE中国核心学术期刊

重庆交通大学学报(自然科学版) ›› 2016, Vol. 35 ›› Issue (4): 6-9.DOI: 10.3969/j.issn.1674-0696.2016.04.02

• 桥梁与隧道工程 • 上一篇    下一篇

面向桥梁结构状态预测的ARMA-GM组合时序模型研究

李修云1,黄硕2,杨文伟3,谭超英4   

  1. (1.重庆工程职业技术学院 信息工程学院,重庆 402260;2.信阳职业技术学院,河南 信阳 464000;3.鞍信托日信息技术有限公司,四川 成都 610081;4.重庆交通大学 信息科学与工程学院,重庆 400074)
  • 收稿日期:2016-01-13 修回日期:2016-03-30 出版日期:2016-08-20 发布日期:2016-08-20
  • 作者简介:第一作者:李修云(1968—),男,四川广安人,副教授,高级工程师,硕士,主要从事电子信息、智能交通、智能算法方面的研究。E-mail:973736111@qq.com。
  • 基金资助:
    国家自然科学基金项目(11372366,51508059);重庆市教委自然科学基金项目(KJ1403209)

Study on ARMA-GM Combined Time-series Model for Structural State Prediction of Bridges

LI Xiuyun1,HUANG Shuo2,YANG Wenwei3,TAN Chaoying4   

  1. (1. Department of Information Engineering,Chongqing Vocational Institute of Engineering, Chongqing 402260, P.R.China;2.Xingyang Vocational & Technical College , Xingyang 464000, Henan, P.R.China;3. Anxin-Tuori Information Technology Co.,Ltd.,610081, Chengdu 610081, Sichuan,P.R.China;4. School of Information Science and Engineering,Chongqing Jiaotong University, Chongqing 400074,P.R.China)
  • Received:2016-01-13 Revised:2016-03-30 Online:2016-08-20 Published:2016-08-20

摘要: 桥梁健康监测数据中蕴含引起桥梁结构状态变化的信息,通过分析其特征变化而实现结构状态预测的方法已得到工程界和学术界的重视。为了克服单一时间序列模型ARMA和灰色关联模型GM(1,1)在桥梁结构状态预测中的不足,提出一种ARMA-GM组合时序预测模型,以描述监测数据序列前后之间的数学关系, 并对未来某一时间段内的监测值进行预测。实验结果表明:组合模型在预测步长增大时预测的平稳性好,而且比单一模型的预测精度更高,能够为桥梁结构安全状态评估提供宝贵的预测数据。

关键词: 桥梁工程, ARMA-GM组合模型, 状态预测

Abstract: The bridge health monitored data contained the information indicating the structural state changes of bridges. The method for structural state prediction by analyzing the data feature variations has drawn the attention in engineering and academic field. To overcome the weakness of single time-series model of ARMA and Grey-relation model of GM(1,1) in the structural state prediction, a combined time-series model of ARMA-GM was proposed to describe the mathematical relationship between the former and later monitored data series, and to achieve the prediction of the values monitored in a future period. The experiment results show that the proposed combined model demonstrated better stability and higher prediction accuracy than the single model when the prediction step is lengthened.Consequently the proposed combined model can provide the valuable predicting data for structural safety assessment of bridges.

Key words: bridge engineering, combined model of ARMA-GM;state predict

中图分类号: