[1] XIAO F , LIGTERINGEN H , GULIJK C V, et al. Comparison study on AIS data of ship traffic behavior[J]. Ocean Engineering, 2015, 95:84-93.
[2] MASCARO S, NICHOLSO A E, KORB K B. Anomaly detection in vessel tracks using Bayesian networks [J]. International Journal of Approximate Reasoning, 2014, 55(1): 84-98.
[3] PERERA L P, OLIVEIRA P, SOARES C G. Maritime traffic monitoring based on vessel detection, tracking, state estimation, and trajectory prediction[J]. IEEE Transactions on Intelligent Transportation Systems, 2012, 13(3): 1188-1200.
[4] 魏照坤, 周康, 魏明,等. 基于AIS数据的船舶运动模式识别与应用[J]. 上海海事大学学报, 2016, 37(2): 17-22.
WEI Zhaokun, ZHOU Kang, WEI Ming, et al. Ship motion pattern recognition and application based on AIS data[J].Journal of Shanghai Maritime University, 2016, 37 (2): 17-22.
[5] 胡春芬. 利用Mehra自适应卡尔曼滤波进行船舶跟踪预测[J]. 舰船科学技术, 2016,38(11A): 52-54.
HU Chunfen. The ship tracking method based on Mehra adaptive Kalman filter [J]. Ship Science and Technology, 2016, 38(11A): 52-54.
[6] TONG Xiaopeng, CHEN Xu, SANG Lingzhi, et al. Vessel trajectory prediction in curving channel of inland river[C]//2015 International Conference on Transportation Information and Safety. IEEE, 2015: 706-714.
[7] 甄荣, 金永兴, 胡勤友,等. 基于AIS信息和BP神经网络的船舶航行行为预测[J]. 中国航海, 2017, 40(2): 6-10.
ZHEN Rong, JIN Yongxing, HU Qinyou, et al.Vessel behavior prediction based on AIS data and BP neural network[J]. Navigation of China, 2017, 40(2): 6-10.
[8] SIMSIR U, ERTUGRUL S. Prediction of manually controlled vessels position and course navigating in narrow waterways using Artificial Neural Networks[J]. Applied Soft Computing, 2009, 9(4): 1217-1224.
[9] ZISSIS D, XIDIAS E K, LEKKAS D. Real-time vessel behavior prediction [J]. Evolving Systems, 2016, 7(1): 29-40.
[10] HUANG Guangbin, ZHU Qinyu, SIEW C K. Extreme learning machine: a new learning scheme of feedforward neural networks[C]//2004 IEEE International Joint Conference on Neural Networks. IEEE, 2004: 985-990.
[11] ZHAO Yongping, SONG Fangquan, PAN Yingting, et al. Retargeting extreme learning machines for classification and their applications to fault diagnosis of aircraft engine [J]. Aerospace Science and Technology, 2017, 71:603-618.
[12] WAN Yihe, SONG Shiji, HUANG Gao, et al. Twin extreme learning machines for pattern classification [J]. Neurocomputing, 2017,260:235-244.
[13] SOKOLOV-MLADENOVI S, MILOVAN EVI M, MLADENOVI I, et al. Economic growth forecasting by artificial neural network with extreme learning machine based on trade, import and export parameters [J]. Computers in Human Behavior, 2016, 65: 43-45.
[14] LIMA A R, CANNON A J, HSIEH W W. Forecasting daily streamflow using online sequential extreme learning machines [J]. Journal of Hydrology, 2016, 537: 431 -443.
[15] MAO Shangbo, TU Enmei, ZHANG Guanghao, et al. An automatic identification system (AIS) database for maritime trajectory prediction and data mining [C]//Proceedings of ELM-2016.Springer,2018:241-257.
[16] 吴兆麟. 海上交通工程[M]. 大连:大连海运学院出版社, 1993.
WU Zhaolin.Marine Traffic Engineering [M]. Dalian :Dalian Maritime College Press, 1993.
[17] 徐婷婷, 柳晓鸣, 杨鑫. 基于BP神经网络的船舶航迹实时预测[J]. 大连海事大学学报, 2012,38(1): 9-11.
XU Tingting, LIU Xiaoming, YANG Xin. BP neural network-based ship track real-time prediction[J]. Journal of Dalian Maritime University, 2012,38(1): 9-11. |