[1] 唐震, 黄茂松, 袁聚云. 基于可变组合机构的黏土基坑抗隆起稳定性上限分析[J]. 岩土工程学报, 2017, 39(增刊2): 180-183.
TANG Zhen, HUANG Maosong, YUAN Juyun. Upper bound analysis of basal stability of excavations in clay based on variable combined mechanism [J]. Chinese Journal of Geotechnical Engineering, 2017, 39(Sup2): 180-183.
[2] 黄茂松, 余生兵. 基坑抗隆起稳定的块体集上限分析[J]. 岩土工程学报, 2012, 34(8): 1440-1447.
HUANG Maosong, YU Shengbing. Upper bound analysis of basal stability in undrained clay based on block set mechanism [J]. Chinese Journal of Geotechnical Engineering, 2012, 34(8): 1440-1447.
[3] HUANG Maosong, TANG Zhen, YUAN Jujun. Basal stability analysis of braced excavations with embedded walls in undrained clay using the upper bound theorem [J ]. Tunnelling and Underground Space Technology, 2018, 79: 231-241.
2006, 132(4): 465-477.
[5] LAM S Y, BOLTON M D. Energy conservation as a principle underlying mobilizable strength design for deep excavations [J]. Journal of Geotechnical and Geoenvironmental Engineering, 2011, 137(11): 1062-1074.
[6] WANG Lizhong, LONG Fan. Base stability analysis of braced deep excavation in undrained anisotropic clay with upper bound theory [J]. Science China Technological Sciences, 2014, 57(9): 1865-1876.
[7] WANG L Z, LIU Y J, HONG Y, et al. Predicting deformation of multipropped excavations in soft clay with a modified mobilizable strength design (MMSD) method [J]. Computers and Geotechnics, 2018, 104: 54-68.
[8] 徐洪钟, 孙鹏鹏, 崔文森, 等. 南京地铁基坑支护结构的MSD综合刚度及变形预估研究[J]. 中国矿业大学学报, 2018, 47(4): 907-912.
XU Hongzhong, SUN Pengpeng, CUI Wensen,et al. MSD synthetic system stiffness and deformation prediction of support structure for deep excavation in Nanjing subway [J]. Journal of China University of Mining & Technology, 2018,47(4): 907-912.
[9] BOLTON M D, LAM S Y, VARDANEGA P J,et al. Ground movements due to deep excavations in Shanghai: Design charts [J]. Frontiers of Structural and Civil Engineering, 2014, 8(3): 201-236.
[10] OROURKE T D. Base stability and ground movement prediction for excavations in soft clay [C]// Retaining Structures. Robinson College, Cambridge: The Institution of Civil Engineers,1993.
[11] JAMIOLKOWSKI M, LADD C C, GERMAINE J T,et al. New developments in field and laboratory testing of soils [C]// Proceedings of the 11th International Conference on Soil Mechanics and Foundation Engineering. Rotterdam, Netherlands: AA Balkema, 1985.
[12] 王洪新. 基坑宽度对围护结构稳定性的影响[J]. 土木工程学报, 2011, 44(6): 120-126.
WANG Hongxin. Influence of excavation width on enclosure-structure stability of foundation pits [J]. China Civil Engineering Journal, 2011, 44(6): 120-126.
[13] CASAGRANDE A, CARILLO N. Shear failure of anisotropic materials [J]. Journal of Boston Society of Civil Engineering, 1944, 31: 74-87.
[14] WHITTLE A J, UKRITCHON B, SU S F,et al. Base stability of deep excavation in anisotropic soft clay [J]. Journal of Geotechnical and Geoenvironmental Engineering, 2000, 126(8): 754-757.
[15] HSIEH P G, OU C Y, LIU H T. Basal heave analysis of excavations with consideration of anisotropic undrained strength of clay [J]. Canadian Geotechnical Journal, 2008, 45(6): 788-799.
[16] MAYNE P W. Determining OCR in clays from laboratory strength[J].Journal of Geotechnical Engineering, 1988, 114(1): 76-92.
[17] CHANG M F. Interpretation of overconsolidation ratio from in situ tests in recent clay deposits in Singapore and Malaysia [J]. Canadian Geotechnical Journal, 1991, 28(2): 210-225.
[18] CHHENG C, LIKITLERSUANG S. Underground excavation behaviour in Bangkok using three-dimensional finite element method [J]. Computers and Geotechnics, 2018, 95: 68-81.
[19] HASHASH Y M A, WHITTLE A J. Ground movement prediction for deep excavations in soft clay [J]. Journal of Geotechnical Engineering, 1996, 122(6): 474-486. |