[1] 陈昌源,戴冉,杨婷婷,等.基于改进GM(1,1)模型的上海港集装箱吞吐量预测[J].船海工程,2016,45(4):153-156.
CHEN Changyuan, DAI Ran, YANG Tingting, et al. Study on container throughput prediction of Shanghai port based on improved GM(1,1) model[J].Ship & Ocean Engineering, 2016, 45(4): 153-156.
[2] 黄荣富,綦化乐,蔡军.三次指数平滑法在港口吞吐量预测中的应用研究[J].水运工程,2007(6):38-40.
HUANG Rongfu, QI Huale, CAI Jun. Research and application of three-time exponential smoothing in forecasting of ports handling capacity[J]. Port & Waterway Engineering, 2007(6): 38-40.
[3] 高嵩,肖青.基于组合模型的天津港吞吐量预测[J].水运工程,2011(4):54-57.
GAO Song, XIAO Qing. Throughput forecast of Tianjin port based on combined model[J].Port & Waterway Engineering, 2011(4): 54-57.
[4] 施泽军,李凯.基于灰色模型和指数平滑法的集装箱吞吐量预测[J].重庆交通大学学报(自然科学版),2008,27(2):302-304.
SHI Zejun, LI Kai. Container throughput forecasting based on gray method and exponential smoothing method[J]. Journal of Chongqing Jiaotong University(Natural Science), 2008, 27(2): 302-304.
[5] 刘长俭,张庆年.基于时间序列BP神经网络的集装箱吞吐量动态预测[J].水运工程,2007(1):4-7.
LIU Changjian, ZHANG Qingnian. Dynamic prediction of container throughput based on the time series BP neural network[J]. Port & Waterway Engineering, 2007(1): 4 -7.
[6] 杨客.遗传算法优化的BP神经网络在连云港港口吞吐量预测中的应用研究[D].深圳:深圳大学,2017.
YANG Ke.Study on the Application of BP Neural Network Optimized by Genetic Algorithm Lianyungang Port Throughput Forecasting[D]. Shenzhen: Shenzhen University, 2017.
[7] 张树奎,肖英杰,鲁子爱.基于灰色神经网络的港口集装箱吞吐量预测模型研究[J].重庆交通大学学报(自然科学版),2015,34(5):135-138.
ZHANG Shukui, XIAO Yingjie, LU Ziai. Prediction model of port container throughput based on grey neural network[J]. Journal of Chongqing Jiaotong University (Natural Science), 2015, 34(5): 135-138.
[8] 辛曼玉.基于ARIMA-RBF神经网络的沿海港口吞吐量预测研究[J].武汉理工大学学报(交通科学与工程版),2014,38(1):241-244.
XIN Manyu. Research on coastal ports throughput prediction based on RBF neural network and ARIMA series[J].Journal of Wuhan University of Technology (Transportation Science & Engineering), 2014, 38(1): 241-244.
[9] 李季涛,马彩雯,孙光祈.基于RBF神经网络的港口集装箱吞吐量动态预测[J].大连交通大学学报,2008,29(4):27-32.
LI Jitao, MA Caiwen, SUN Guangqi. Dynamic prediction of port container throughput based on RBF neural network[J].Journal of Dalian Jiaotong University, 2008, 29 (4): 27-32.
[10] CHEN Ye. Forecast of short-term wind power based on GA optimized Elman neural network[J]. Applied Mechanics and Materials, 2014, 536/537: 470-475.
[11] ZHANG Zhisheng, GONG Wenjie. Short-term load forecasting model based on quantum Elman neural networks[J]. Mathematical Problems in Engineering, 2016(3): 1-8.
[12] 段满珍,陈光,张林,等.动态随机有效停车泊位预测方法[J].重庆交通大学学报(自然科学版),2018,37(6):81-86.
DUAN Manzhen, CHEN Guang, ZHANG Lin, et al. Prediction method of dynamic stochastic effective parking space[J]. Journal of Chongqing Jiaotong University(Natural Science), 2018, 37(6): 81-86.
[13] WANG Xuqi, ZHAO Zongtao, ZHANG Shanwen. Prediction for net-work traffic based on modified Elman neural network[J]. Applied Mechanics and Materials, 2013, 241/244: 3005-3009.
[14] FU Xueqian, HUANG Shangyuan, LI Rui, et al. Thermal load prediction considering solar radiation and weather[J]. Energy Procedia, 2016, 103: 3-8.
[15] HAN Hangxing, WANG Jinquan, CHEN Kai, et al. SOC prediction research of VRB based on Elman neural network[J]. Applied Mechanics and Materials, 2016, 826: 118-122.
[16] ELMAN J L. Finding structure in time[J]. Cognitive Science, 1990, 14: 179-211.
[17] MADSEN H, PINSON P, KARINIOTAKIS G. Standardizing the perfor-mance evaluation of short term wind power prediction models[J]. Wind Engineering, 2005, 29 (6): 475-489.
[18] 戴浪,黄守道,黄科元,等.风电场风速的神经网络组合预测模型[J].电力系统及其自动化学报,2011,23(4):27-31.
DAI Lang, HUANG Shoudao, HUANG Keyuan, et al. Combination forecasting model based on neural networks for wind speed in wind farm[J].Proceedings of the CSU-EPSA, 2011, 23(4): 27-31. |