中文核心期刊
CSCD来源期刊
中国科技核心期刊
RCCSE中国核心学术期刊

重庆交通大学学报(自然科学版) ›› 2020, Vol. 39 ›› Issue (06): 8-12.DOI: 10.3969/j.issn.1674-0696.2020.06.02

• 交通+大数据人工智能 • 上一篇    下一篇

基于Elman神经网络的港口货物吞吐量预测

李广儒,朱庆辉   

  1. (大连海事大学 航海学院,辽宁 大连 116026)
  • 收稿日期:2018-08-07 修回日期:2018-12-03 出版日期:2020-06-26 发布日期:2020-06-29
  • 作者简介:李广儒(1970—),男,辽宁大连人,教授,博士,主要从事交通信息工程及控制方面的研究。E-mail:liguangru@sina.com。 通信作者:朱庆辉(1994—),男,河南信阳人,硕士研究生,主要从事交通信息工程及控制方面的研究。E-mail:gushizhuqinghui@163.com。
  • 基金资助:
    国家自然科学基金项目(51579025)

Forecasting of Port Cargo Throughput Based on Elman Neural Network

LI Guangru, ZHU Qinghui   

  1. (Navigation College, Dalian Maritime University, Dalian 116026, Liaoning, China)
  • Received:2018-08-07 Revised:2018-12-03 Online:2020-06-26 Published:2020-06-29

摘要: 为提高港口货物吞吐量的预测精度,进而为港口建设提供数据支持,引入具有处理动态信息能力的Elman神经网络。将Elman神经网络应用于宁波舟山港的货物吞吐量预测,采用前6个月数据递归预测后一个月数据的方式构建时间序列数据,同时与BP神经网络以及RBF神经网络的预测结果进行分析比较。结果表明:在港口货物吞吐量预测方面,相比于BP神经网络以及RBF神经网络,Elman神经网络更能适应吞吐量数据随时间变化的特性,其预测值更接近实际值,其预测性能更优,且更能体现港口实际状态。

关键词: 交通运输工程, 港口, 货物吞吐量, Elman神经网络, 预测, 动态学习

Abstract: To improve the prediction accuracy of port cargo throughput and further provide data support for port construction, Elman neural network with the capability of dealing with dynamic information was introduced. Elman neural network was applied to the forecast of cargo throughput in Ningbo-Zhoushan port, and the time series data were constructed by using the first six months data to recursively predict the next month data. Meanwhile, the prediction results were compared with those of BP neural network and RBF neural network. The results show that: in terms of port cargo throughput forecast, compared with BP neural network and RBF neural network, Elman neural network can better adapt to the characteristics of the throughput data varying with time, and its prediction values are closer to the actual values, whose prediction performance is better. And it can better reflect the actual state of the port.

Key words: traffic and transportation engineering, port, cargo throughput, Elman neural networks, forecasting, dynamic learning

中图分类号: