中文核心期刊
CSCD来源期刊
中国科技核心期刊
RCCSE中国核心学术期刊

重庆交通大学学报(自然科学版) ›› 2020, Vol. 39 ›› Issue (09): 59-66.DOI: 10.3969/j.issn.1674-0696.2020.09.09

• 桥梁与隧道工程 • 上一篇    下一篇

基于形函数推导考虑剪切变形的欧拉梁单元刚度矩阵

张军锋1,尹会娜1,孙大勇2,李杰1,陈淮1   

  1. (1. 郑州大学 土木工程学院, 郑州 河南 450001; 2. 中国建筑第七工程局有限公司 郑州 河南 450004)
  • 收稿日期:2019-03-02 修回日期:2019-08-19 出版日期:2020-09-18 发布日期:2020-09-22
  • 作者简介:张军锋(1983—),男,河南平顶山人,副教授,博士,主要从事结构和桥梁抗风方面的研究。E-mail:brilliantshine@163.com
  • 基金资助:
    国家自然科学基金项目(51508523)

Euler Beam Element Stiffness Matrix Considering Shear Deformation Based on Shape Function Derivation

ZHANG Junfeng1, YIN Huina1, SUN Dayong2, LI Jie1, CHEN Huai1   

  1. (1. School of Civil Engineering, Zhengzhou University, Zhengzhou 450001, Henan, China; 2. China Construction Seventh Engineering Division CORP.LTD Zhengzhou 450004, Henan, China)
  • Received:2019-03-02 Revised:2019-08-19 Online:2020-09-18 Published:2020-09-22

摘要: 针对考虑剪切变形的等截面欧拉梁单元的刚度矩阵推导问题,笔者以形函数为基础,根据虚功原理,在不计入剪切变形欧拉梁单元的刚度矩阵的基础上,系统给出了计入剪切变形的欧拉梁单元刚度矩阵推导过程,并与ANSYS中Beam4单元刚度矩阵进行了对比研究。研究结果表明:ANSYS中的Beam4单元为可计入剪切变形的欧拉梁单元,并且通过与Beam188单元的应用对比,明确其适用性与Beam188单元一致,即长细比应满足ANSYS的建议值GAL2/EI>30。

关键词: 桥梁工程, 欧拉梁, 单元刚度矩阵, 形函数, 剪切变形

Abstract: The proposed study was initiated to make clear the derivation process of stiffness matrix of the equal cross-section Euler beam element considering shear deformation. The derivation process of the stiffness matrix of the Euler beam element with shear deformation was systematically given, and the comparison study on stiffness matrix of Beam4 element in ANSYS was carried out on the basis of the shape function, according to the principle of virtual work. The results show that the Beam4 element in ANSYS is a Euler beam element which can take into account the shear deformation. Through the application comparison with Beam188 element, it is clear that its applicability is consistent with Beam188 element, that is, the slenderness ratio should meet the recommended value of ANSYS GAL2/EI>30.

Key words: bridge engineering, Euler beam, element stiffness matrix, shape function, shear deformation

中图分类号: