[1] 王勖成.有限单元法[M]. 北京: 清华大学出版社, 2003.
WANG Xucheng. Finite Element Methods [M]. Beijing: Tsinghua University Press, 2003.
[2] 龙驭球, 包世华. 结构力学(第二版) [M]. 北京: 高等教育出版社, 1994.
LONG Yuqiu, BAO Shihua. Structural Mechanics [M]. 2nd Edition. Beijing: Higher Education Press, 1994.
[3] 陈学玲, 王新敏. Beam18×单元在杆系结构分析中的应用[J]. 国防交通工程与技术, 2009, 7(1): 67-70.
CHEN Xueling, WANG Xinmin. Application of beam18x elements to the analysis of pole structures [J]. Traffic Engineering and Technology for National Defense, 2009,7(1): 67-70.
[4] 李华, 武兰河, 黄羚. 一种新的考虑剪切变形影响的梁单元[J]. 石家庄铁道学院学报, 1999, 12(4): 58-61.
LI Hua, WU Lanhe, HUANG Ling. A new element in consideration of the effect of the shear deformation on beam deflection [J]. Journal of Shijiazhuang Railway Institute, 1999, 12(4): 58-61.
[5] 李华. 按高阶理论考虑剪切变形影响的梁单元刚度矩阵[J]. 石家庄铁道学院学报, 1997, 10(2):32-38.
LI Hua. Stiffness matrix formulation of thick beams based on high order shear deformation theory [J]. Journal of Shijiazhuang Railway Institute, 1997, 10(2): 32 -38.
[6] 肖玲, 李银山. 变截面梁单元刚度矩阵及稳定分析[J]. 工程力学, 1998, (S): 406-410.
XIAO Ling, LI Yinshan. Stiffness matrix and stability analysis of variable section beam elements [J]. Engineering Mechanics, 1998, (S): 406-410.
[7] 张军锋, 尹会娜, 李杰, 等. 欧拉-伯努利梁单元刚度矩阵推导[J]. 水利与建筑工程学报, 水利与建筑工程学报, 2019, 17(3): 89-93, 113.
ZHANG Junfeng, YIN Huina, LI Jie, et al. Derivation of element stiffness matrix of euler-bernoulli beam element [J]. Journal of Water Resources and Architectural Engineering, 2019, 17(3): 89-93,113.
[8] 王焕定, 焦兆平. 有限单元法基础[M]. 北京: 高等教育出版社, 2002.
WANG Huanding, JIAO Zhaoping. Fundament of Finite Element Methods [M]. Beijing: Higher Education Press, 2002.
[9] 朱伯芳. 有限单元法原理与应用(第四版)[M]. 北京: 中国水利水电出版社, 2003.
ZHU Bofang. Principles and Applications of Finite Element Methods [M]. Beijing: China Water and Power Press, 2003.
[10] 王青, 徐港. ANSYS梁单元的理论基础及其选用方法[J]. 三峡大学学报(自然科学版), 2005, 27(4): 336-340.
WANG Qing, XU Gang. Theoretical basis of beam elements in ANSYS and application [J]. Journal of Three Gorges University (Natural Science Edition), 2005, 27(4): 336-340.
[11] PRZEMIENIECKI J S. Theory of Matrix Structural Analysis [M]. New York: McGraw-Hill Press, 1968.
[12] YOKOYAMA T. Vibrations of a hanging Timoshenko beam under gravity [J]. Journal of Sound and Vibration, 1990, 141(2): 245-258.[13] 朱晓东, 何欢, 宋大鹏 , 等. 一种考虑截面完整变形特征的空间三维梁有限元模型[J]. 振动工程学报, 2019, 32(2): 241-251.〖DW〗ZHU Xiaodong, HE Huan, SONG Dapeng,et al. Finite element model of the three dimensional beam for accurately describing arbitrary deformation of the beam cross-section [J]. Journal of Vibration Engineering, 2019, 32(2): 241-251.[14] 尹欧阳. 基于能量的变截面梁等效模型研究[D]. 广州:广东工业大学, 2019.〖DW〗Yin Ouyang. Equivalent Model Research of Variable Section Beam Based on Energy [D]. Guangzhou: Guangdong University of Technology, 2019. |