中文核心期刊
CSCD来源期刊
中国科技核心期刊
RCCSE中国核心学术期刊

重庆交通大学学报(自然科学版) ›› 2021, Vol. 40 ›› Issue (01): 140-146.DOI: 10.3969/j.issn.1674-0696.2021.01.21

• 交通装备 • 上一篇    

PCM泡沫铝/液冷复合式锂电池热管理

安治国,陈星,田茂飞,赵琳,司鑫   

  1. (重庆交通大学 机电与车辆工程学院,重庆 400074)
  • 收稿日期:2019-07-29 修回日期:2019-11-06 出版日期:2021-01-11 发布日期:2021-01-11
  • 作者简介:安治国(1976—),男,山西太原人,副教授,博士,主要从事新能源电动汽车方面的研究。E-mail:108844410@qq.com
  • 基金资助:
    重庆市自然科学基金项目(cstc2016jcyjA0467)

Thermal Management of PCM Foam Aluminum/Liquid Cooling Composite Lithium-ion Battery

AN Zhiguo, CHEN Xing, TIAN Maofei, ZHAO Lin, SI Xin   

  1. (Scholl of Mechatronics and Vehicle Engineering, Chongqing Jiaotong University, Chongqing 400074, China)
  • Received:2019-07-29 Revised:2019-11-06 Online:2021-01-11 Published:2021-01-11
  • Supported by:
     

摘要: 为满足3C放电倍率下电池组散热要求,提出了PCM泡沫铝/液冷复合式散热方案,利用有限元法对散热模型进行数值模拟并运用响应面法分析了PCM泡沫铝孔隙率、流道间距、液体流速对电池组温度的影响。研究结果表明:孔隙率和液体流速对电池组最高温度影响显著,增加孔隙率和液体流速可降低电池组最高温度,但当孔隙率和液体流速分别大于84%和0.06 m/s时,电池组最高温度趋于稳定;液体流速对电池组温差影响显著,增加液体流速可提高电池组均温性能,当流速仅为0.04 m/s时,复合式散热系统最高温度为319.0 K,比纯被动和纯液冷散热系统最高温度分别降低了4、4.9 K,且电池组温差仅为1.8 K。

 

关键词: 车辆工程, 锂电池组, PCM泡沫铝, 热管理, 响应面法, 液冷

Abstract: In order to meet the heat dissipation requirements of the battery pack at 3 C discharge rate, a PCM foam aluminum/liquid cooling composite cooling scheme was proposed. The heat dissipation model was numerically simulated by the finite element method. The influence of porosity of PCM foam aluminum, the distance between the flow channels and the liquid flow rate on the temperature of the battery pack was analyzed by response surface methodology. The research results indicate that the porosity and liquid flow rate have significant effects on the maximum temperature of battery pack. The maximum temperature of the battery pack can be reduced by increasing the porosity and liquid flow rate, but the maximum temperature tends to be stable when the porosity and liquid flow rate are greater than 84% and 0.06 M/s respectively. Meanwhile, the flow rate also has a significant influence on the temperature difference of the battery, and the average temperature performance of the battery pack can be improved by increasing the liquid flow rate. Furthermore, when the flow rate is only 0.04 m/s, the maximum temperature of the composite cooling system is 319.0 K, which is 4 K and 4.9 K lower than that of the pure passive cooling system and pure liquid cooling system, and the temperature difference of the battery pack is only 1.8 K.

Key words: vehicle engineering, lithium-ion battery module, PCM aluminum foam, thermal management, response surface methodology, liquid cooling

中图分类号: