[1] 窦珊,张广宇,熊智华.基于LSTM时间序列重建的生产装置异常检测[J].化工学报,2019,70(2):481-486.
DOU Shan, ZHANG Guangyu, XIONG Zhihua. Anomaly detection of process unit based on LSTM time series reconstruction [J]. Journal of Chemical Industry and
Engineering (China), 2019, 70(2): 481-486.
[2] 曾惟如,吴佳,闫飞.基于层级实时记忆算法的时间序列异常检测算法[J].电子学报,2018,46(2):325-332.
ZENG Weiru, WU Jia, YAN Fei. Time series anomaly detection model based on hierarchical temporal memory [J]. Acta electronica Sinica, 2018, 46(2): 325-332.
[3] 陈兴蜀,江天宇,曾雪梅,等.基于多维时间序列分析的网络异常检测[J]. 工程科学与技术,2017,49(1):144-150.
CHEN Xingshu, JIANG Tianyu, ZENG Xuemei, et al. Network anomaly detector based on multiple time series analysis [J]. Advanced Engineering Sciences, 2017, 49(1):
144-150.
[4] 闫伟,张军.基于时间序列分析的网络流量异常检测[J].吉林大学学报(理学版),2017,55(5):1249-1254.
YAN Wei, ZHANG Jun. Network traffic anomaly detection based on time series analysis [J]. Journal of Jilin University (Science Edition), 2017, 55(5): 1249-1254.
[5] 余宇峰 ,朱跃龙,万定生,等.基于滑动窗口预测的水文时间序列异常检测[J].计算机应用,2014,34(8):2217-2220.
YU Yufeng, ZHU Yuelong, WAN Dingsheng, et al. Time series outlier detection based on sliding window prediction [J]. Journal of Computer Applications, 2014, 34
(8): 2217 -2220.
[6] 陈乾,胡谷雨,路威.基于距离和DF-RLS的时间序列异常检测[J].计算机工程,2012,38(12): 32-35.
CHEN Qian, HU Guyu, LU Wei. Outlier detection for time series based on distance and DF-RLS [J]. Computer Engineering, 2012, 38(12): 32-35.
[7] 孙梅玉. 基于距离和密度的时间序列异常检测方法研究[J].计算机工程与应用,2012,48(20):11-17,22.
SUN Meiyu. Research on discords detect on time series based on distance and density [J]. Computer Engineering and Applications, 2012, 48(20): 11-17.
[8] 徐永红,侯晓颖,李书亭,等.基于黎曼流形的多元时间序列异常检测[J].生物医学工程学杂志,2015,32(3):542-547.
XU Yonghong, HOU Xiaoying, LI Shuting, et al. Anomaly detection of multivariate time series based on Riemannian manifolds [J]. Journal of Biomedical Engineering,
2015, 32(3): 542-547.
[9] 李海林,邬先利.基于频繁模式发现的时间序列异常检测方法[J].计算机应用,2018,38(11):3204-3210.
LI Hailin, WU Xianli. Time series anomaly detection method based on frequent pattern discovery [J] Journal of Computer Applications, 2018, 38(11): 3204-3210.
[10] 曹丹阳,段立娜,李晋宏.基于时间序列异常检测的铝电解槽阴极压降判异方法研究[J].轻金属,2018(3):33-36
CAO Danyang, DUAN Lina, LI Jinhong. Anomaly detection method research for cathode voltage drop of aluminum reduction cell based on time series anomaly detection [
J]. Light Metals, 2018(3): 33-36.
[11] 朱炜玉,史斌,姜继平,等.基于水质时间序列异常检测的动态预警方法[J]. 环境科学与技术,2018,41(12):131-137.
ZHU Weiyu, SHI Bin, JIANG Jiping, et al. Dynamic early warning method based on abnormal detection of water quality time series [J]. Environmental Science &
Technology, 2018, 41(12):131-137.
[12] 袁丽欣,顾益军,赵大鹏.基于XGBoost方法的社交网络异常用户检测技术[J] 计算机应用研究.2019,37(3):814-817.
YANG Lixin, GU Yijun, ZHAO Dapeng. Research on abnormal user detection technology in social network based on XGBoost method [J]. Application Research of
Computers, 2019, 37(3): 814-817.
[13] 程淑红,张仕军,李雷华,等.基于鱼群运动特征和XGBoost的异常水质监测[J].计量学报,2018,39(4):572-577.
CHENG Shuhong, ZHANG Shijun, LI Leihua, et al. Water quality monitoring based on fish movement characteristics and XGBoost[J]. Acta Metrologica Sinica, 2018, 39
(4): 572-577.
[14] 袁明月,文鸿雁,杨志,等.基于Grubbs 准则的小波阈值改进研究[J].人民长江,2014,45(14):69-75.
YUAN Mingyue, WEN Hongyan, YANG Zhi, et al. Research on wavelet threshold improvement based on Grubbs rule [J]. Yangtze River, 2014, 45(14): 69-75. |