中文核心期刊
CSCD来源期刊
中国科技核心期刊
RCCSE中国核心学术期刊

重庆交通大学学报(自然科学版) ›› 2021, Vol. 40 ›› Issue (12): 7-11.DOI: 10.3969/j.issn.1674-0696.2021.12.02

• 交通+大数据人工智能 • 上一篇    

融合眼动和脑电特征的疲劳驾驶检测研究

徐军莉,王平,穆振东   

  1. (江西科技学院 协同创新中心, 江西 南昌 330098)
  • 收稿日期:2020-10-10 修回日期:2021-01-18 发布日期:2021-12-27
  • 作者简介:徐军莉(1977—),女,江西丰城人,副教授,主要从事汽车安全方面的研究。E-mail:244095158@qq.com
  • 基金资助:
    国家自然科学基金项目 (61762045) ; 江西省教育厅科技项目(GJJ180979,GJJ191000);江西省自然科学基金项目(20202BABL202031)

Fatigue Driving Detection Based on Eye Movement and EEG Features

XU Junli, WANG Ping, MU Zhendong   

  1. (Center of Collaboration and Innovation, Jiangxi University of Technology, Nanchang 330098, Jiangxi, China)
  • Received:2020-10-10 Revised:2021-01-18 Published:2021-12-27

摘要: 疲劳驾驶是导致交通事故的主要因素, 采用脑电或眼动特征来检测疲劳驾驶是常用的方法。相对眼动特征, 采用脑电特征检测率高但稳定性不如眼动特征。为了获得高且稳定的检测率, 首先利用小波熵函数从脑电电极CP4、TP8、T5、P3、Pz、P4、T6、O1、Oz、O2中提取脑电特征, 然后将脑电特征和眼睛的扫视长度进行融合, 利用KNN算法建立基于融合特征的疲劳检测模型。最后将基于融合特征的检测模型与基于脑电特征的检测模型进行比较。结果发现: 两个检测模型的检测均值相差不多,但就检测稳定性来比较,基于融合特征的模型比基于脑电特征的模型更加稳定。

关键词: 交通运输工程; 眼动与脑电特征;多特征融合;疲劳驾驶;检测模型

Abstract: Fatigue driving is the main cause of traffic accidents. EEG or eye movement features are commonly used to detect driving fatigue. Compared with eye movement features, EEG features have higher detection rate, but the stability is not as good as that of eye movement features. In order to obtain high and stable detection rate, the wavelet entropy function was firstly used to extract the EEG features from the EEG electrodes CP4, TP8, T5, P3, Pz, P4, T6, O1, Oz and O2. And then EEG features and eye saccade length were fused, and KNN algorithm was used to establish a fatigue detection model based on fusion features. Finally, the detection model based on fusion features was compared with the detection model based on EEG features. The results show that: the detection mean values of the two detection models are not much different. but the detection effect based on fusion features is more stable than that based on EEG features.However, in terms of detection stability, the model based on fusion features is more stable than the model based on EEG features

Key words: traffic and transportation engineering; eye movement and EEG features; multi-feature fusion; fatigue driving; detection model

中图分类号: