[1] 王殿海,付凤杰,蔡正义,等.基于排队最远点约束的最大周期时长优化防范[J].华南理工大学学报(自然科学版),2014,42(5):67-74.
WANG Dianhai, FU Fengjie, CAI Zhengyi, et al. Optimization method of maximum cycle length based on back of queue[J]. Journal of South China University of Technology (Natural Science Edition), 2014, 42(5):67-74.
[2] 马莹莹,杨晓光,曾滢.信号控制交叉口周期时长多目标优化模型及求解[J].同济大学学报(自然科学版),2009,37(6):761-765.
MA Yingying, YANG Xiaoguang, ZENG Ying. Multi-objectivecycle length optimization model and solution [J]. Journal of Tongji University (Natural Science),2009,37(6):761-765.
[3] 徐建闽,李岿林,翟春杰,等.基于短时交通流预测的单交叉口自适应控制[J].重庆交通大学学报(自然科学版),2018,37(9):73-78.
XU Jianmin, LI Kuilin, ZHAI Chunjie,et al. Self-adaptive control of isolated intersection based on short-term traffic flow prediction [J]. Journal of Chongqing Jiaotong University (Natural Science), 2018, 37(9):73-78.
[4] 张骥,汤元会.城市路网交叉口信号预测及配时控制[J].西安工业大学学报,2015,35(8):672-677.
ZHANG Ji, TANG Yuanhui. Prediction of intersections signal and timing control of urban road network [J]. Journal of Xian Institute of Technology,2015,35(8):672-677.
[5] CUI Chenyou, SHIN Jisun, LEE Heehyol. Real-time traffic signal learning control using BPNN based on predictions of the probabilistic distribution of standing vehicles[J]. Artificial Life and Robotics, 2010, 15:58-61.
[6] 贺战兵.基于人工神经网络预测控制的交通信号调度[J].计算技术与自动化,2010,29(1):22-24,50.
HE Zhanbing. Trafficsignal scheduling based on artificial neural network prediction control[J].Computing Technology and Automation, 2010,29(1):22-24,50.
[7] LIANG Zilu, WAKAHARA Y. Real-time urban traffic amount prediction models for dynamic route guidance systems [J]. EURASIP Journal on Wireless Communications and Networking,2014,2014(1): 1-13.
[8] 康军,段宗涛,唐蕾,等.高斯过程回归短时交通流预测方法[J].交通运输系统工程与信息,2015,15(4):51-56.
KANG Jun, DUAN Zongtao, TANG Lei, et al. A short term traffic flow prediction method based on Gaussian processes regression[J]. Transportation System Engineering and Information, 2015,15(4): 51-56.
[9] MORE R, ABHISHEK M, RAJGURE S, et al. Road traffic prediction and congestion control using artificial neural networks[C]∥2016 International Conference on Computing, Analytics and Security Trends (CAST). IEEE: IEEE Electronic Library, 2016: 52-57.
[10] 管硕,高军伟,张彬,等.基于K-均值聚类算法RBF神经网络交通流预测[J].青岛大学学报(工程技术版),2014,29(2):20-23.
GUAN Shuo, GAO Junwei, ZHANG Bin, et al. Traffic flow prediction based on K-means clustering algorithm and RBF neural network [J]. Journal of Qingdao University (Engineering & Technology Edition), 2014, 29(2): 20-23.
[11] 杨乾坤,王晓红.基于多路口预测与实时配时合作的交通控制系统设计[J].计算机测量与控制,2018,26(12):93-96.
YANG Qiankun, WANG Xiaohong. Traffic control system design based on multi-road prediction and real-time timing cooperation [J]. Computer Measurement & control, 2018,26(12):93-96.
[12] 吴金顺.城市道路信号控制交叉口配时优化模型[J].公路与汽运,2017(6):53-56.
WU Jinshun. Optimization model of timing at signal-controlled intersections of urban roads [J]. Highways & Automotive Applications, 2017(6):53-56.
[13] National Research Council (U.S.). HCM2010: Highway Capacity Manual [M/OL]. 5th ed. Transportation Research Board, 2010. http:∥www.trb.org/main/blurbs/164718.aspx.
[14] 袁晶矜,袁振洲.信号交叉口通行能力计算方法的比较分析[J].公路交通技术, 2006(5):123-128,132.
YUAN Jingjin, YUAN Zhenzhou.Comparison analysis of calculation methods for traffic capacity at signal junction [J]. Technology of Highway and Transport, 2006(5): 123-128, 132.
[15] 赵晓宇.遗传神经网络在交通控制中的应用研究[D]. 长春:吉林大学,2009.
ZHAO Xiaoyu. Research on the Application of Genetic Neural Network in Traffic Control[D]. Changchun: Jilin University, 2009. |