中文核心期刊
CSCD来源期刊
中国科技核心期刊
RCCSE中国核心学术期刊

重庆交通大学学报(自然科学版) ›› 2022, Vol. 41 ›› Issue (08): 58-66.DOI: 10.3969/j.issn.1674-0696.2022.08.09

• 交通基础设施工程 • 上一篇    下一篇

机器学习在磁记忆无损检测领域的应用及展望

杨茂1,2,张洪1,周建庭1,刘人铭1,陈军1   

  1. (1. 重庆交通大学 土木工程学院,重庆 400074; 2. 重庆三峡学院 土木工程学院,重庆 404100)
  • 收稿日期:2020-12-24 修回日期:2021-03-18 发布日期:2022-08-19
  • 作者简介:杨茂(1991—),女,重庆人,讲师,博士研究生,主要从事钢筋锈蚀无损检测方面的研究。E-mail:yangmao@mails.cqjtu.edu.cn 通信作者:周建庭(1972—),男,浙江金华人,教授,博士,主要从事桥梁结构损伤、加固与健康监测方面的研究。E-mail:jtzhou@cqjtu.edu.cn
  • 基金资助:
    国家自然科学基金项目(U20A20314,51808081);重庆市自然科学基金创新群体科学基金项目(cstc2019jcyj-cxttX0004);重庆市技术创新与应用发展专项重点项目(cstc2019jscx-gksbX0047);重庆市教委科技研究项目(KJQN202001211); 重庆三峡学院科研项目(19QN11); 重庆交通大学研究生科研创新项目(2020B0003)

Application and Prospect of Machine Learning in the Field of Magnetic Memory Nondestructive Testing

YANG Mao1,2,ZHANG Hong1, ZHOU Jianting1, LIU Renming1, CHEN Jun1   

  1. (1. School of Civil Engineering, Chongqing Jiaotong University, Chongqing 400074, China; 2. School of Civil Engineering, Chongqing Three Gorges College, Chongqing 404100, China)
  • Received:2020-12-24 Revised:2021-03-18 Published:2022-08-19

摘要: 磁记忆检测作为一种新兴的无损检测技术,具有快速、便捷地检测应力集中和微观缺陷的优点,而机器学习具有强大的学习能力和自适应能力,适用于磁记忆检测产生的大量非线性数据的处理。主要综述了机器学习算法在磁记忆无损检测领域的应用现状,考虑将机器学习应用于桥梁内部钢筋损伤的磁记忆检测当中,最终展望了机器学习在此领域的发展趋势。结果表明:以支持向量机、神经网络、聚类算法为代表的各种机器学习算法目前在磁记忆检测中得到了广泛应用,主要用于各类钢试件缺陷的损伤等级评估和缺陷尺寸反演,在桥梁钢筋损伤的磁记忆检测中尚无相关应用;单一算法具有较大的局限性,多种算法结合可以提高预测准确率;要实现磁记忆在桥梁结构内部钢筋损伤检测中的突破发展,需进一步考虑复杂结构和检测环境,结合机器学习算法建立各类影响因素与磁信号之间的关系模型,机器学习中的回归算法也可进一步应用到缺陷程度的评估当中。

关键词: 桥梁工程; 机器学习;磁记忆;无损检测;应用;展望

Abstract: As a newly emerged nondestructive testing technology, magnetic memory testing has the advantages of rapid and convenient detection of stress concentration and micro defects. Machine learning has strong learning ability and self-adaptive ability, which is suitable for processing large amount of non-linear data generated by magnetic memory detection. This article mainly reviewed the application status of machine learning algorithms in the field of magnetic memory nondestructive testing and considered the application of machine learning in magnetic memory detection of reinforcement damage inside bridges. Finally, the development trend of machine learning in this field was prospected. The results show that various machine learning algorithms represented by SVM, ANN and clustering have been widely used in magnetic memory testing, which are mainly used for damage grade evaluation and defect size inversion of steel specimens and have no relevant application in magnetic memory detection of bridge reinforcement damage. A single algorithm has great limitations, and the combination of multiple algorithms can improve prediction accuracy. To achieve the breakthrough development of magnetic memory in the detection of reinforcement damage inside bridges, it is necessary to consider the complex structure and detection environment. In the future, machine learning algorithm will be used to establish the relationship model between various influencing factors and magnetic signals. The regression algorithm in machine learning can also be further applied to the evaluation of defect degree.

Key words: bridge engineering; machine learning; magnetic memory; non-destructive testing; application; prospect

中图分类号: