[1] DUBOV A A. A study of metal properties using the method of magnetic memory[J]. Metal Science and Heat Treatment, 1997, 39(9): 401-405.
[2] 董丽虹, 徐滨士, 朱子新, 等. 铁磁材料磁记忆检测技术的研究现状[J]. 新技术新工艺, 2005(9):24-27.
DONG Lihong, XU Binshi, ZHU Zixin, et al. The present state of metal magnetic memory testing for ferromagnetic materials [J]. New Technology and New Process, 2005(9): 24-27.
[3] 王威, 易术春, 苏三庆, 等. 金属磁记忆无损检测的研究现状和关键问题[J]. 中国公路学报, 2019, 32(9): 1-21.
WANG Wei, YI Shuchun, SU Sanqing, et al. Research status and critical problems of metal magnetic memory testing[J]. China Journal of Highway and Transport, 2019,32(9):1-21.
[4] WANG Zhengdao, GU Yuanxun, WA Yuesheng. A review of three magnetic NDT technologies[J]. Journal of Magnetism and Magnetic Materials, 2012, 324(4): 382-388.
[5] 杨茂, 周建庭, 张洪, 等. 混凝土内部钢筋锈蚀的磁记忆检测[J]. 建筑材料学报, 2018, 21(2): 345-350.
YANG Mao, ZHOU Jianting, ZHANG Hong, et al. Magnetic memory detection of rebar corrosion in concrete[J]. Journal of Building Materials, 2018,21(2):345-350.
[6] DUBOV A A. Diagnostics of steam turbine disks using the metal magnetic memory method[J]. Thermal Engineering, 2010, 57(1): 16-21.
[7] KOLOKOLNIKOV S M, DUBOV A A, MARCHENKOV A Y. Determination of mechanical properties of metal of welded joints by strength parameters in the stress concentration zones detected by the metal magnetic memory method[J]. Welding in the World, 2014, 58(5): 699-706.
[8] DUBOV A, KOLOKOLNIKOV S. The metal magnetic memory me-thod application for online monitoring of damage development in steel pipes and welded joints specimens[J]. Welding in the World, 2013, 57(1): 123-136.
[9] 李壮年, 储满生, 柳政根, 等. 基于机器学习和遗传算法的高炉参数预测与优化[J]. 东北大学学报(自然科学版), 2020,41(9):1262-1267.
LI Zhuangnian, CHU Mansheng, LIU Zhenggen, et al. Prediction and optimization of blast furnace parameters based on machine learning and genetic algorithm[J]. Journal of Northeastern University (Natural Science Edition), 2020, 41(9): 1262-1267.
[10] 刘留, 张建华, 樊圆圆, 等. 机器学习在信道建模中的应用综述[J]. 通信学报, 2020, 41(8): 1-20.
LIU Liu, ZHANG Jianhua, FAN Yuanyuan, et al. Survey of application of machine learning in wireless channel modeling [J]. Journal on Communications, 2020, 41(8): 1- 20.
[11] 陈海昕, 邓凯文, 李润泽. 机器学习技术在气动优化中的应用[J]. 航空学报, 2019,40(1):47-63.
CHEN Haixin, DENG Kaiwen, LI Runze. Application of machine learning technology in aerodynamic optimization[J]. Acta Aeronautica Sinica, 2019, 40(1): 47-63.
[12] ZHAO Rui, YAN Ruiqiang, CHEN Zhenghua, et al. Deep learning and its applications to machine health monitoring[J]. Mechanical Systems and Signal Processing, 2019,115: 213-237.
[13] HOANG D, KANG H. A survey on deep learning based bearing fault diagnosis[J]. Neurocomputing, 2019, 335: 327-335.
[14] KHAN S, YAIRI T. A review on the application of deep learning in system health management[J]. Mechanical Systems and Signal Processing, 2018, 107: 241-265.
[15] 米晓希, 汤爱涛, 朱雨晨, 等. 机器学习技术在材料科学研究中的应用进展[J]. 材料导报, 2021,35(15):15115-15124.
MI Xiaoxi, TANG Aitao, ZHU Yuchen, et al. Machine learning: A potential powerful tool for materials science research [J]. Materials Review, 2021,35(15): 15115-15124.
[16] 邢海燕, 葛桦, 秦萍, 等. 基于遗传神经网络的焊缝缺陷等级磁记忆定量化研究[J]. 材料科学与工艺, 2015,23(2):33-38.
XING Haiyan, GE Hua, QIN Ping, et al. Quantitative research on magnetic memory of weld defect grade based on genetic neural network[J]. Materials Science and Technology, 2015,23(2): 33-38.
[17] 秦萍. 基于优化算法的焊缝缺陷等级磁记忆定量化研究[D]. 大庆: 东北石油大学, 2014:33-35.
QIN Ping. MMM Quantifying of Welded Joint Defect Levels Based on BP Neural Network Optimized by Genetic Algorithm[D]. Daqing: Northeast Petroleum University, 2014:33-35.
[18] 邢海燕, 孙晓军, 王犇, 等. 基于模糊加权马尔科夫链的焊缝隐性损伤磁记忆特征参数定量预测[J]. 机械工程学报, 2017,53(12):70-77.
XING Haiyan, SUN Xiaojun, WANG Ben, et al. Quantitative MMM characteristic parameter prediction for weld hidden damage status based on the fuzzy weighted markov chain [J]. Journal of Mechanical Engineering, 2017,53(12): 70-77.
[19] 邢海燕, 喻正帅, 李雪峰, 等. 基于模糊c均值聚类算法的焊缝缺陷等级磁记忆定量识别[J]. 压力容器, 2018,35(6):57-63.
XING Haiyan, YU Zhengshuai, LI Xuefeng, et al. Quantitative metal magnetic memory identification of weld defect levels based on fuzzy c-means clustering algorithm [J ]. Pressure Vessel, 2018,35(6):57-63.
[20] 喻正帅. 基于模糊聚类分析的磁记忆信号临界特征提取研究[D]. 大庆:东北石油大学, 2018:30-32
YU Zhengshuai. Research on Extracting Critical Features of Magnetic Memory Signals Based on Fuzzy Clustering Analysis[D].Daqing: Northeast Petroleum University, 2018: 30-32.
[21] 邢海燕, 陈玉环, 李雪峰, 等. 基于动态免疫模糊聚类的金属焊缝缺陷等级磁记忆识别模型[J]. 仪器仪表学报, 2019,40(11):225-232.
XING Haiyan, CHEN Yuhuan, LI Xuefeng, et al. Magnetic memory identification model of mental weld defect levels based on dynamic immune fuzzy clustering [J]. Chinese Journal of Scientific Instrument, 2019, 40(11): 225-232.
[22] 易方, 李著信, 吕宏庆, 等. 基于模糊核支持向量机的管道磁记忆检测缺陷识别[J]. 石油学报, 2010,31(5):863-866, 870.
YI Fang, LI Zhuxin, LYU Hongqing, et al. Defect recognition by metal magnetic memory detection of pipelines based on the fuzzy kernel function SVM [J]. Acta Petrolei Sinica, 2010, 31(5): 863-866,870.
[23] LIU Zhilin, LIU Lutao, ZHANG Jun. Signal feature extraction and quantitative evaluation of metal magnetic memory testing for oil well casing based on data preprocessing technique[J]. Abstract and Applied Analysis, 2014:1-9.
[24] GONG Lihong, LI Zhuxin, ZHANG Zhen. Diagnosis model of pipeline cracks according to metal magnetic memory signals based on adaptive genetic algorithm and support vector machine[J]. The Open Mechanical Engineering Journal, 2015, 9(1): 1076-1080.
[25] 龚利红, 李著信, 许红, 等. 基于感知器神经网络的金属磁记忆检测管道缺陷分析[J]. 机床与液压, 2013,41(9):186-188.
GONG Lihong, LI Zhuxin, XU Hong, et al. Analysis of pipeline defects by metal magnetic memory detection based on perceptron neural network[J]. Machine Tool & Hydraulics, 2013, 41(9): 186-188.
[26] 刘书俊, 蒋明, 张伟明, 等. 基于BP神经网络的油气管道缺陷磁记忆检测[J]. 无损检测, 2015,37(7):25-28.
LIU Shujun, JIANG Ming, ZHANG Weiming, et al. Magnetic memory testing on oil and gas pipeline based on BP neural network[J]. Nondestructive Testing, 2015, 37(7): 25-28.
[27] 李远利, 李著信, 刘书俊. 模糊免疫算法及其在金属磁记忆检测中的应用[J]. 微型机与应用, 2012,31(6):69-71.
LI Yuanli, LI Zhuxin, LIU Shujun. Application of fuzzy-immune algorithm in metal magnetic memory testing signal analysis[J]. Microcomputers and Applications, 2012, 31(6): 69-71.
[28] 李效露. 基于小波奇异性和神经网络的钢绳芯输送带故障诊断方法的研究[D]. 太原:太原理工大学, 2013:65-71.
LI Xiaolu. Research of Fault Diagnosis Method of Steel Cord Conveyor Belt Based on Wavelet Singularity and Neural Network[D]. Taiyuan: Taiyuan University of Technology, 2013: 65-71.
[29] 王慧鹏, 董丽虹, 董世运, 等. 基于磁记忆的应力集中神经网络识别[J]. 理化检验-物理分册, 2013,49(9):576-579.
WANG Huipeng, DONG Lihong, DONG Shiyun, et al. Neural network recognition of stress concentration based on magnetic memory testing[J]. Physical Testing and Chemical Analysis Part A:Physical Testing, 2013, 49(9): 576-579.
[30] SHU Di, YIN Ling, BU Jin, et al. Application of a combined metal magnetic memory-magnetic Barkhausen noise technique for on-site detection of the stress-free temperature of a continuous welded rail[J]. Proceedings of the Institution of Mechanical Engineers, Part F: Journal of Rail and Rapid Transit, 2014, 230(3): 774-783.
[31] 邢海燕, 党永斌, 王犇, 等. 基于K-近邻隶属度模糊支持向量机的再造抽油杆损伤等级磁记忆定量识别[J]. 石油学报, 2015,36(11):1427-1432, 1456.
XING Haiyan, DANG Yongbin, WANG Ben, et al. Quantitative MMM identification of damage levels based on KNN FSVM for remanufactured sucker rod[J]. Acta Petrolei Sinica, 2015, 36(11): 1427-1432, 1456.
[32] 李思岐, 俞洋, 党永斌, 等. 基于改进的支持向量回归机算法的磁记忆定量化缺陷反演[J]. 工程科学学报, 2018,40(9):1123-1130.
LI Siqi, YU Yang, DANG Yongbin, et al. Metal magnetic memory quantitative inversion of defects based on optimized support vector machine regression[J]. Journal of Engineering Science, 2018, 40(9): 1123-1130.
[33] 李立刚, 万勇, 王宇, 等. 基于支持向量机和磁记忆技术的管道缺陷深度的定量化反演研究[J]. 腐蚀与防护, 2020,41(1):29-34,40.
LI Ligang, WAN Yong, WANG Yu, et al. Quantitative inversion of pipeline defect depth based on support vector machine and magnetic memory technology[J]. Corrosion and Protection, 2020, 41(1): 29-34,40.
[34] 王帅, 黄海鸿, 韩刚, 等. 基于PCA与GA-BP神经网络的磁记忆信号定量评价[J]. 电子测量与仪器学报, 2018,32(10):190-196.
WANG Shuai, HUANG Haihong, HAN Gang, et al. Quantitative evaluation of magnetic memory signal based on PCA & GA-BP neural network[J]. Journal of Electronic Measurement and Instrument, 2018, 32(10): 190-196.
[35] 王宇, 万勇, 杨勇, 等. 基于极限学习机及磁记忆技术的管道缺陷分类方法研究[J]. 油气田地面工程, 2019,38(7):98-103.
WANG Yu, WAN Yong, YANG Yong, et al. Classification method research on pipeline defects based on extreme learning machine and magnetic memory technology[J]. Oil and Gas Field Surface Engineering, 2019, 38(7): 98-103.
[36] 史小东, 樊建春, 周威, 等. 基于BP神经网络管道磁记忆检测模式识别[J]. 石油机械, 2020,48(6):111-117.
SHI Xiaodong, FAN Jianchun, ZHOU Wei, et al. Pattern recogni-tion of pipeline magnetic memory inspection based on BP neural network [J]. Petroleum Machinery, 2020, 48(6): 111-117.
[37] GAO Yatian, LENG Jiancheng, LI Siqi. Residual life prediction me-thod for remanufacturing sucker rods based on magnetic memory testing and a support vector machine model[J]. Insight (Northampton), 2019, 61(1): 44-50.
[38] 周宏强, 黄玲玲, 王涌天. 深度学习算法及其在光学的应用[J]. 红外与激光工程, 2019, 48(12): 299-318.
ZHOU Hongqiang, HUANG Lingling, WANG Yongtian. Deep learning algorithm and its application in optics[J]. Infrared and Laser Engineering, 2019, 48(12): 299-318.
[39] 牛程程, 李少波, 胡建军, 等. 机器学习在材料信息学中的应用综述[J]. 材料导报, 2020,34(23):23100-23108.
NIU Chengcheng, LI Shaobo, HU Jianjun, et al. Application of machine learning in material informatics: A survey[J]. Materials Review, 2020, 34(23): 23100-23108. |