中文核心期刊
CSCD来源期刊
中国科技核心期刊
RCCSE中国核心学术期刊

Journal of Chongqing Jiaotong University(Natural Science) ›› 2016, Vol. 35 ›› Issue (1): 134-137.DOI: 10.3969/j.issn.1674-0696.2016.01.26

• Traffic & Transportation Engineering • Previous Articles     Next Articles

Fault Diagnosing and Modifying of Dynamic Traffic Data Based on MSPCA

LU Baichuan, GUO Guilin, XIAO Wenqian, ZHANG Hai, ZHANG Kai, DENG Jie   

  1. College of Traffic & Transportation, Chongqing Jiaotong University, Chongqing 400074, P.R.China
  • Received:2014-09-25 Revised:2014-10-30 Online:2016-02-20 Published:2016-04-21
  • Contact: 郭桂林(1989—),男,重庆人,硕士研究生,主要从事交通信息工程及控制方面的研究。E-mail: knight_guo@126.com。

基于多尺度主元分析法的动态交通数据 故障诊断与修复

陆百川,郭桂林,肖汶谦,张海,张凯,邓捷   

  1. 重庆交通大学 交通运输学院,重庆 400074
  • 作者简介:陆百川(1961—),男,江苏南通人,教授,博士,博士生导师,主要从事交通信息工程及控制方面的研究。
  • 基金资助:
    重庆交通大学研究生教育创新基金项目(20130111)

Abstract: In order to handle the problem of fault in dynamic traffic data, an improved multi-scale principal component analysis (MSPCA) and a data modifying model were proposed. Firstly, using wavelet packet multi-scale decomposition, the individual variable was decomposed into approximation coefficients and detail coefficients of multiple scales and the corresponding principal component analysis models in various scale matrices were established. Using the model statistical magnitude as the threshold value, the comprehensive principal component analysis model was obtained by reconstructing wavelet coefficients and the fault data was separated. Secondly, using the data modifying model and correlation coefficients of each set of data calculated out by the time correlation and spatial correlation, the true value of the fault data was estimated. Finally, various simulation results were given.

Key words: traffic and transportation engineering, multi-scale principal component analysis (MSPCA), fault diagnosing, data modifying, wavelet packet

摘要: 针对动态交通数据的故障问题,提出了一种改进的多尺度主元分析(MSPCA)方法及数据修复模型。利用小波包多尺度分解将每个变量一次分解成逼近系数和多个尺度的细节系数,并在各个尺度矩阵建立相应的主元分析模型。以模型统计量控制限为阈值,对小波系数重构得到综合主元分析模型,并将故障数据分离出来。利用数据修复模型以及根据时间相关性和空间相关性计算出各组数据的相关系数,并估算出故障数据的真实值。最后给出了各种仿真结果。

关键词: 交通运输工程, 多尺度主元分析, 故障诊断, 数据修复, 小波包

CLC Number: