[1] BELYTSCHKO T, BLACK T. Elastic crack growth in finite elements with minimal remeshing[J]. International Journal for Numerical Methods in Engineering, 1999, 45(5): 601-620.
[2] SUKUMAR N, PREVOST J H. Modeling quasi-static crack growth with the extended finite element method. part I: computer implementation[J]. International Journal of Solids and Structures,2003, 40(26): 7513-7537.
[3] PATHAK H, SINGH A, SINGH I V. Fatigue crack growth simulations of 3-D problems using XFEM[J]. International Journal of Mechanical Sciences, 2013, 76(11): 112-131.
[4] BROUMAND P, KHOEI A R. The extended finite element method for large deformation ductile fracture problems with a non-local damage-plasticity model[J]. Engineering Fracture Mechanics, 2013, 112(11): 97-125.
[5] ZHANG Y L, FENG X T. Extended finite element simulation of crack propagation in fractured rock masses[J]. Materials Research Innovations, 2011, 15(Sup1): 594-596.
[6] BELYTSCHKO T, GU L, LU Y Y. Fracture and crack growth by element free Galerkin methods[J]. Modelling and Simulation in Materials Science and Engineering, 1994, 2(3A): 519-534.
[7] KRYSL P, BELYTSCHKO T. The element free Galerkin method for dynamic propagation of arbitrary 3-D cracks[J]. International Journal for Numerical Methods in Engineering, 1999, 44(6): 767-800.
[8] RAO B N, RAHMAN S. Probabilistic fracture mechanics by Galerkin meshless methods-part I: rates of stress intensity factors[J]. Computational Mechanics, 2002, 28(5): 351-364.
[9] CUNDALL P A. A computer model for simulating progressive large scale movements in block system[C]//Proceeding of the Symposium of the International Society for Rock Mechanics. Nancy, France:[s.n.], 1971.
[10]YANG L, JIANG Y J, LI S C. Experimental and numerical research on 3D crack growth in rocklike material subjected to uniaxial tension[J]. Journal of Geotechnical and Geoenvironmental Engineering, 2013, 139(10): 1781-1788.
[11]JIANG Y J, LI B, YAMASHITA Y J. Simulation of cracking near a large underground cavern in a discontinuous rock mass using the expended distinct element method[J]. International Journal of Rock Mechanics & Mining Sciences, 2009, 46(1): 97-106.
[12]蒋明镜, 陈贺, 刘芳. 岩石微观胶结模型及离散元数值仿真方法初探[J]. 岩石力学与工程学报, 2013, 32(1): 16-23.
JIANG Mingjing, CHEN He, LIU Fang. A microscopic bond model for rock and preliminary study of numerical simulation method by distinct element method[J]. Chinese Journal of Rock Mechanics and Engineering, 2013, 32(1): 15-23.
[13]周喻, 吴顺川, 许学良, 等. 岩石破裂过程中声发射特性的颗粒流分析[J]. 岩石力学与工程学报, 2013, 32(5): 951-959.
ZHOU Yu, WU Shunchuan, XU Xueliang, et al. Particle flow analysis of acoustic emission characteristics during rock failure process[J]. Chinese Journal of Rock Mechanics and Engineering, 2013, 32(5): 951-959.
[14]ZHAO C, MATSUDA H, MORITA C, et al. Study on failure characteristic of rock-like materials with an open-hole under uniaxial compression[J]. Strain, 2011, 47(5): 405-413.
[15]赵程, 田加深, 松田浩, 等. 单轴压缩下基于全局应变场分析的岩石裂纹扩展及其损伤演化特性研究[J]. 岩石力学与工程学报, 2015, 34(4): 763-769.
ZHAO Cheng, TIAN Jiashen, MATSUDA Hiroshi, et al. Study on the crack propagation and damage evolution characteristics of rock based on the global strain field under uniaxial compression[J]. Chinese Journal of Rock Mechanics and Engineering, 2015, 34(4): 763-769.
[16]赵程, 鲍冲, 松田浩, 等. 数字图像技术在节理岩体裂纹扩展试验中的应用研究[J].岩土工程学报,2015,37(5): 944-951.
ZHAO Cheng, BAO Chong, MATSUDA Hiroshi, et al. Application of digital image correlation method in experimental research on crack propagation of brittle rock[J]. Chinese Journal of Geotechnical Engineering, 2015, 37(5): 944-951.
[17]YANG L, JIANG Y J, LI B, et al. Estimation of dynamic behaviors of bedrock foundation subjected to seismic loads based on FEM and DEM simulations[J]. KSCE Journal of Civil Engineering, 2013, 17(2): 342-350.
[18]YANG L, JIANG Y J, LI S C, et al. Experimental and numerical research on 3D crack growth in rocklike material subjected to uniaxial tension[J]. Journal of Geotechnical and Geoenvironmental Engineering, 2013, 139(10): 1781-1788. |