中文核心期刊
CSCD来源期刊
中国科技核心期刊
RCCSE中国核心学术期刊

Journal of Chongqing Jiaotong University(Natural Science) ›› 2019, Vol. 38 ›› Issue (05): 13-19.DOI: 10.3969/j.issn.1674-0696.2019.05.03

• Transport+Big Data and Artificial Intelligence • Previous Articles     Next Articles

Short-Term Traffic Flow Forecasting Based on Multi-source Traffic Data Fusion

LU Baichuan1,2, SHU Qin1, MA Guanglu1   

  1. (1. School of Traffic &Transportation, Chongqing Jiaotong University, Chongqing 400074, P. R. China; 2. Key Lab of Traffic System & Safety in Mountain Cities, Chongqing Jiaotong University, Chongqing 400074, P. R. China)
  • Received:2017-12-18 Revised:2018-05-04 Online:2019-05-15 Published:2019-05-15

基于多源交通数据融合的短时交通流预测

陆百川1,2,舒芹1,马广露1   

  1. (1. 重庆交通大学 交通运输学院,重庆 400074; 2. 重庆交通大学 山地城市交通系统与安全实验室,重庆 400074)
  • 作者简介:陆百川(1961—),男,江苏南通人,教授,博士生导师,主要从事智能交通方面的研究。E-mail:656542576@qq.com。 通信作者:舒芹(1994—),女,四川遂宁人,硕士研究生,主要从事交通运输规划与管理方面的研究。E-mail:1159194738@qq.com。
  • 基金资助:
    重庆市基础与前沿研究计划项目(cstc2016jcyjA0010)

Abstract: Traffic data acquired by different types of traffic detectors contain different traffic information and traffic flow prediction plays an important role in traffic management and control. According to this, multi-source traffic data dynamic weighted fusion and short-term traffic flow forecasting were carried out. On the premise of synthetically analyzing the characteristics of multi-source data and the superiority of data fusion, combining with the advantages of global search of genetic algorithm and adaptive learning of wavelet neural network, a short-term traffic flow forecasting model based on multi-source data fusion and genetic wavelet neural network (GA-WNN) was put forward. The results of case study show that: the traffic data fusion method based on GA-WNN has more advantages than others, and the prediction accuracy of multi-source data fusion is better than that of single data source short-term traffic flow prediction sequence, which provides more precise and comprehensive traffic information for the decision-making of traffic managers and the choice of path for traffic travelers.

Key words: traffic engineering, multi-source data fusion, short-term traffic flow forecasting, genetic algorithm, wavelet neural network

摘要: 不同类型交通检测器所获取的交通数据中包含了不同的交通信息,交通流预测在交通管理与控制中具有重要作用,基于此,进行了多源交通数据动态加权融合和短时交通流预测。在综合分析多源数据特性及其融合优势的前提下结合遗传算法的全局搜索及小波神经网络的自适应学习优点,提出了基于多源数据融合与遗传-小波神经网络(GA-WNN)的短时交通流预测模型。通过实例验证分析,基于GA-WNN的交通数据融合方法比其他方法更有优势;同时,多源数据融合的预测精度优于单一数据源的短时交通流预测序列,从而能为交通管理者的判断决策与交通出行者的路径选择提供更准确、全面的交通信息。

关键词: 交通工程, 多源数据融合, 短时交通流预测, 遗传算法, 小波神经网络

CLC Number: