[1] 叶正国. 网络预约出租汽车的回应型法律规制[J]. 电子政务,2018(1):39-46.
YE Zhengguo. Therespondent law rules of online car-hailing [J]. E-Government,2018(1):39-46.
[2] 唐立,邹彤,罗霞,等. 基于混合Logit模型的网约车行为研究[J]. 交通运输系统工程与信息,2018,18(1):108-114.
TANG Li, ZHOU Tong, LUO Xia, et al. Choice behavior of taxi-hailing based on mixed-Logit model [J]. Journal of Transportation Systems Engineering and Information Technology, 2018,18(1): 108-114.
[3] 郭瑞雪. 基于BP神经网络的网约车出行需求短时预测[D]. 北京:北京交通大学,2017:36-46.
GUO Ruixue.Short-Term Prediction on Demand of E-Hailing Trips Based on BP Neural Network [D].Beijing: Beijing Jiaotong University, 2017:36-46.
[4] 安磊,赵书良,武永亮,等. 基于recurrent neural networks的网约车供需预测方法 [J]. 计算机应用研究,2018,36(4):2-10.
AN Lei, ZHAO Shuliang, WU Yonliang, et al. Prediction method of supplv and demand for online car based on recurrent neural networks [J]. Application Research of Computers , 2018,36 (4):2-10.
[5] 程静,刘家骏,高勇. 基于时间序列聚类方法分析北京出租车出行量的时空特征[J]. 地球信息科学学报,2016,18(9) :1227-1239.
CHENG Jing, LIU Jiajun, GAO Yong. Analyzing the spatio-temporal characteristics of Beijings OD trip volume based on time series clustering method[J]. Journal of Geo-Information Science,2016,18(9) :1227-1239.
[6] 梁坤,孙莉,罗建锋. 基于DTW 距离聚类的交叉口拥堵检测[J]. 大连交通大学学报, 2016, 37(4) : 5-10.
LIANG Kun, SUN Li, LUO Jianfeng. Study of detecting intersection congestion based on DTW distance clustering [J]. Jouranl of Dalian Jiaotong University,2016,37 (4) :5-10.
[7] 何晓旭. 时间序列数据挖掘若干关键问题研究[D]. 合肥:中国科学技术大学,2015:5-7.
HE Xiaoxu. Research on Key Issues in Time Series Data Mining[D]. Hefei:University of Science and Technology of China, 2015: 5-7.
[8] LI Jing,LU Baoliang. An adaptive image Euclidean distance [J]. Pattern Recognition, 2009,42(3) : 349-357.
[9] BERNDT D J, CLIFFORD J. Using dynamic time warping to find patterns in time series[C]//AAAI-94 Workshop on Knowledge Discovery in Databases. Seattle,USA:ACM,1994: 359-370.
[10] 吴冕. 基于特性分析的交通流时间序列聚类[D]. 北京:北京交通大学,2015:18-20.
WU Mian. Traffic Flow Time Series Clustering Based on Feature Analysis[D].Beijing:Beijing Jiaotong University,2015:18-20.
[11] GILPIN S, DAVIDSON L. A flexible ILP formulation for hierarchical clustering[J].Artificial Intelligence, 2017,244: 95-109.
[12] 涂辉,刘丽,张正金. 改进DTW算法的心电信号相似性度量[J].计算机工程与应用,2015,51(16):215-218.
TU Hui, LIU Li, ZHANG Zhengjin. Improved DTW algorithm to measure similarity of ECG signal[J].Computer Engineering and Applications, 2015, 51(16):215-218.
[13] 尚福华,孙达辰,吕海霞. 提高DTW 运算效率的改进算法[J].计算机工程与设计,2010,31(15):3518-3520.
SHANG Fuhua, SUN Dachen, LV Haixia. Improvement algorithm of improved DTW efficiency [J].Computer Engineering and Design,2010,31(15): 3518-3520. |