中文核心期刊
CSCD来源期刊
中国科技核心期刊
RCCSE中国核心学术期刊

Journal of Chongqing Jiaotong University(Natural Science) ›› 2022, Vol. 41 ›› Issue (08): 17-23.DOI: 10.3969/j.issn.1674-0696.2022.08.03

• Transportation+Big Data & Artificial Intelligence • Previous Articles     Next Articles

Short-Term Traffic Flow Forecasting Based on XGBoost

JIAO Pengpeng1, AN Yu1,2, BAI Zixiu1, LIN Kun1,3   

  1. (1. Beijing Advanced Innovation Center for Future Urban Design, Beijing University of Civil Engineering and Architecture, Beijing 100044, China; 2. Beijing General Municipal Engineering Design and Research Institute Co., Ltd., Beijing 100082, China; 3. Fuzhou Planning and Design Research Institute Group Co., Ltd., Fuzhou 350000, Fujian, China)
  • Received:2020-10-27 Revised:2021-04-14 Published:2022-08-19

基于XGBoost的短时交通流预测研究

焦朋朋1,安玉1,2,白紫秀1,林坤1,3   

  1. (1. 北京建筑大学 北京未来城市设计高精尖创新中心,北京 100044; 2. 北京市市政工程设计研究总院有限公司, 北京 100082; 3. 福州市规划设计研究院集团有限公司,福建 福州 350000)
  • 作者简介:焦朋朋(1980—),男,安徽淮北人,教授,博士,主要从事城市及区域交通规划和智能交通系统方面的研究。E-mail:jiaopengpeng@bucea.edu.cn
  • 基金资助:
    国家自然科学基金项目(51578040);北京市属高校高水平教师队伍建设支持计划项目(CIT&TCD20180324);北京市属高校基本科研业务费专项资金资助项目(X18081,X18094)

Abstract: In view of the contradiction between the complexity and the prediction accuracy of short-term traffic flow forecasting model, an ensemble learning XGBoost (eXtreme Gradient Boosting) model was proposed to predict traffic flow, making full use of its advantages of high prediction accuracy and fast calculation speed for high-dimensional characteristic data. Firstly, the outliers of the original data were processed by median filtering. Then, a forecasting model was established based on XGBoost model, which used the method of cross-validation to determine the optimal value of the super-parameter and obtain the importance of each feature by predicting the test set. Finally, the prediction results of the model were compared with those of other short-term traffic flow prediction methods. The results show that using median filter to reduce noise and making full use of traffic flow data of adjacent sections can significantly improve the prediction accuracy of the model. The prediction accuracy of XGBoost model is 96.6%. In comparison with the other short-term traffic flow forecasting models, the proposed model can more fully utilize the temporal characteristics and spatial correlation of traffic flow.

Key words: traffic engineering; intelligent transportation; short-term traffic flow forecasting; XGBoost; spatial-temporal correlativity; ensemble learning

摘要: 针对短时交通流预测模型复杂度与预测精度的矛盾,提出基于集成学习的XGBoost(eXtreme gradient boosting)模型预测交通流,充分利用其对高维特征数据预测精度高以及计算速度快的优势。首先对原始数据的异常值进行中值滤波处理;然后基于XGBoost模型建立预测模型,利用交叉验证的方法确定最优的超参数取值,对测试集进行预测得到各个特征的重要度;最终将模型预测结果与其他短时交通流预测方法的预测结果进行比较。结果表明:中值滤波降噪处理和充分利用相邻断面的交通流数据均对模型预测精度有显著提升,XGBoost模型的预测精度高达96.6%,相比其他短时交通流预测模型更能充分利用交通流的时间特性和空间相关性。

关键词: 交通工程;智能交通;短时交通流预测;XGBoost;时空相关性;集成学习

CLC Number: