[1] 王晓全, 邵春福, 尹超英, 等. 基于ARIMA-GARCH-M模型的短时交通流预测方法[J].北京交通大学学报,2018, 42(4):79-84.
WANG Xiaoquan, SHAO Chunfu, YIN Chaoying, et al. Short term traffic flow forecasting method based on ARIMA-GARCH-Model [J]. Journal of Beijing Jiaotong University, 2018, 42(4): 79-84.
[2] 罗向龙, 李丹阳, 杨彧, 等.基于KNN-LSTM的短时交通流预测[J].北京工业大学学报, 2018, 44(12):1521-1527.
LUO Xianglong, LI Danyang, YANG Yu, et al. Short-term traffic flow prediction based on KNN-LSTM [J]. Journal of Beijing University of Technology, 2018, 44(12): 1521- 1527.
[3] WANG J, DENG W, GUO Y. New Bayesian combination method for short-term traffic flow forecasting [J]. Transportation Research Part C: Emerging Technologies, 2014, 43: 79-94.
[4] 罗文慧,董宝田,王泽胜.基于CNN-SVR混合深度学习模型的短时交通流预测[J].交通运输系统工程与信息, 2017, 17(5): 68-74.
LUO Wenhui, DONG Baotian, WANG Zesheng. Short-term traffic flow prediction based on CNN-SVR hybrid deep learning model [J]. Journal of Transportation Systems Engineering and Information Technology, 2017, 17(5):68-74.
[5] TIAN Y, ZHANG K, LI J, et al. LSTM-based traffic flow prediction with missing data [J]. Neurocomputing, 2018, 318: 297-305.
[6] CHENG S, LU F, PENG P, et al. Short-term traffic forecasting: An adaptive ST-KNN model that considers spatial heterogeneity [J]. Computers, Environment and Urban Systems, 2018, 71: 186-198.
[7] 廖荣华,兰时勇,刘正熙.基于混沌时间序列局域法的短时交通流预测[J].计算机技术与发展,2015,25(1):1-5.
LIAO Ronghua, LAN Shiyong, LIU Zhengxi. Short-term traffic flow forecasting based on local prediction method in chaotic time series [J]. Computer Technology and Development, 2015, 25(1): 1-5.
[8] 康军,段宗涛,唐蕾,等.高斯过程回归短时交通流预测方法[J].交通运输系统工程与信息, 2015,15(4):51-56.
KANG Jun, DUAN Zongtao, TANG Lei, et al. A short-term traffic prediction method based on gaussian processes regression [J]. Journal of Transportation Systems Engineering and Information Technology, 2015, 15(4): 51-56.
[9] 魏中锐.基于深度学习的交通流量预测[D].北京:北京交通大学,2019.
WEI Zhongrui. Traffic Flow Prediction Based on Deep Learning [D]. Beijing: Beijing Jiaotong University, 2019.
[10] 王祥雪, 许伦辉.基于深度学习的短时交通流预测研究[J]. 交通运输系统工程与信息, 2018, 18(1): 81-88.
WANG Xiangxue, XU Lunhui. Short-term traffic flow prediction based on deep learning [J]. Journal of Transportation Systems Engineering and Information Technology,
[11] DENG S, JIA S, CHEN J. Exploring spatial-temporal relations via deep convolutional neural networks for traffic flow prediction with incomplete data [J]. Applied Soft Computing, 2019, 78: 712-721.
[12] GUO S, LIN Y, LI S, et al. Deep spatial-temporal 3D convolutional neural networks for traffic data forecasting [J]. IEEE Transactions on Intelligent Transportation Systems, 2019, 20(10): 3913-3926.
[13] HOU Q, LENG J, MA G, et al. An adaptive hybrid model for short-term urban traffic flow prediction [J]. Physical A: Statistical Mechanics and Its Applications, 2019, 527: 121065.
[14] VLAHOGIANNI E I, KARLAFTIS M G, GOLIAS J C. Short-term traffic forecasting: Where we are and where were going [J]. Transpor-tation Research Part C: Emerging Technologies, 2014, 43: 3-19.
[15] 赵宏, 翟冬梅, 石朝辉.短时交通流预测模型综述[J].都市快轨交通, 2019, 32(4): 50-54.
ZHAO Hong, ZHAI Dongmei, SHI Chaohui. Review of short-term traffic flow forecasting models [J]. Urban Rapid Rail Transit, 2019, 32(4): 50-54.
[16] POLSON N G, SOKOLOV V O. Deep learning for short-term traffic flow prediction [J]. Transportation Research Part C: Emerging Techno- logies, 2017, 79: 1-17.
[17] LV Y, DUAN Y, KANG W, et al. Traffic flow prediction with big data: A deep learning approach [J]. IEEE Transactions on Intelligent Transpor- tation Systems, 2014, 16(2): 865-873. |