中文核心期刊
CSCD来源期刊
中国科技核心期刊
RCCSE中国核心学术期刊

Journal of Chongqing Jiaotong University(Natural Science) ›› 2022, Vol. 41 ›› Issue (12): 151-156.DOI: 10.3969/j.issn.1674-0696.2022.12.21

• Transportation Equipment • Previous Articles    

A CACC Data Accuracy Improvement Method Based on Improved Kalman Filtering in V2X Environment

ZHAO Hongzhuan1, LU Ningning1, CHEN Jianpen1, ZHAN Xin2, XU Enyong2   

  1. (1. School of Architecture and Transportation Engineering, Guilin University of Electronic Technology, Guilin 541004, Guangxi, China; 2. Dongfeng Liuzhou Automobile Co., Ltd., Liuzhou 545000, Guangxi, China)
  • Received:2021-10-11 Revised:2022-05-23 Published:2023-01-16

一种V2X环境下基于改进卡尔曼滤波的CACC数据精度提高方法

赵红专1,卢宁宁1,陈建鹏1,展新2,许恩永2   

  1. (1. 桂林电子科技大学 建筑与交通工程学院,广西 桂林 541004; 2. 东风柳州汽车有限公司 商用车技术中心,广西 柳州 545000)
  • 作者简介:赵红专(1985—),男,广西桂林人,副教授,博士,主要从事交通信息物理系统(T-CPS)、智能交通系统(ITS)、智能网联技术、可靠感知和可信交互技术等方面的研究。E-mail:zhz19850108@126.com 通信作者:卢宁宁(1996—),女,河南周口人,硕士研究生,主要从事交通信息物理系统(T-CPS)、智能交通系统(ITS)、智能网联技术、可靠感知和可信交互技术等方面的研究。E-mail:465934409@qq.com
  • 基金资助:
    广西重点研发计划项目(桂科 AB21220052);广西科技重大专项项目(桂科AA19182022);柳州市重大专项项目(2021CAA0101);桂林市创新平台和人才计划项目(20210217-15);教育部产学研合作协同育人项目(201702117006);广西可信软件重点实验室开放课题项目(kx202023);桂林电子科技大学研究生教育创新计划资助项目(2021YCXS178)

Abstract: Aiming at the problem of noise in acquiring cooperative adaptive cruise control (CACC) vehicle state data (including displacement, speed, acceleration, etc.) through vehicle-to-vehicle and vehicle-to-road communication in V2X environment, a method to improve the accuracy of CACC vehicle driving data based on improved Kalman filtering algorithm was proposed, considering the change of velocity azimuth angle of the vehicles when driving on the curve. According to the geometric relationship of the CACC vehicle driving on the curve, by taking into account the changes of vehicle driving displacement, speed and other driving states at the previous time and the current time, the optimal estimation of vehicle driving state was made for the driving data after improved Kalman filtering, so as to improve the accuracy of CACC vehicle driving state data. The improved Kalman filtering algorithm was established through the joint simulation platform of CarSim and Simulink to simulate and verify the data obtained by CACC vehicles during the course of driving on the curve. The simulation results show that the improved Kalman filtering algorithm makes the accuracy of vehicle driving displacement MSE increase by 81.04% and RMSE increase by 56.96%, which is closer to the expected value and has better accuracy.

Key words: vehicle engineering; intelligent transportation; CACC; improved Kalman filtering; data processing; V2X

摘要: 针对V2X环境下通过车车、车路通信获取的CACC车辆行驶状态数据(包括位移、速度和加速度等)存在噪声的问题,考虑车辆在弯道行驶过程中速度方位角的变化,提出了一种改进卡尔曼滤波算法的CACC车辆行驶数据精度提高方法。该方法根据CACC车辆在弯道行驶的几何关系,通过考虑上一时刻和当前时刻车辆行驶位移、速度等行驶状态的变化,将其行驶数据经过改进卡尔曼滤波后对车辆行驶状态做出最优估计,进而提高CACC车辆行驶状态数据精度。通过CarSim和Simulink联合仿真平台建立改进卡尔曼滤波算法对CACC车辆在弯道行驶过程中获取数据的仿真和验证。仿真结果表明,改进的卡尔曼滤波算法使车辆行驶位移的精确度MSE提高了81.04%,RMSE提高了56.96%,更接近期望值,具有更好的准确性。

关键词: 车辆工程;智能交通;协同自适应巡航控制;改进卡尔曼滤波;数据处理;V2X

CLC Number: