[1] CALISKAN M, BARTHELS A, SCHEUERMANN B, et al. Predicting parking lot occupancy in vehicular ad hoc networks[C]∥2007 IEEE 65th Vehicular Technology Conference- VTC2007-Spring. IEEE, 2007.
[2] CAICEDO F, BLAZQUEZ C, MIRANDA P. Prediction of parking space availability in real time[J]. Expert Systems with Applications, 2012, 39(8): 7281-7290.
[3] MILLARD-BALL A, WEINBERGER R R, HAMPSHIRE R C. Is the curb 80% full or 20% empty? Assessing the impacts of San Franciscos parking pricing experiment[J]. Transportation Research Part A: Policy and Practice, 2014,63:76-92.
[4] JI Yanjie, GAO Liangpeng, CHEN Xiaoshi, et al. Strategies for multi-step-ahead available parking spaces forecasting based on wavelet transform[J]. Journal of Central South University 2017,24(6):1503-1512.
[5] 肖雪. 路外停车需求长短时预测方法研究[D].长春:吉林大学,2020.
XIAO Xue. Research on the Short-Term and Long-Term Prediction Method of Off-Street Parking Demand [D]. Changchun: Jilin University,2021.
[6] 章伟. 城市停车场泊位多步预测方法及泊位预约策略优化研究[D].杭州:浙江大学,2018.
ZHANG Wei.Urban Parking Spaces Multi-step Prediction and Optimi-zation of Parking Reservation Strategy [D]. Hangzhou: Zhejiang University,2018.
[7] KLAPPENECKER A, LEE H, WELCH J L. Finding available parking spaces made easy[J]. Ad Hoc Networks, 2014, 12(1):243-249.
[8] 付宇, 翁剑成, 钱慧敏,等. 基于XGBoost算法的大型活动期间轨道进出站量预测[J].武汉理工大学学报:交通科学与工程版, 2020,44(5):832-836.
FU Yu, WENG Jiancheng, QIAN Huimin,et al. Prediction of metro passenger flow during large-scale activities based on XGBoost algorithm[J]. Journal of Wuhan University of Technology(Transportation Science & Engineering),2020,44(5):832-836.
[9] 陈剑强,杨俊杰,楼志斌.基于XGBoost算法的新型短期负荷预测模型研究[J].电测与仪表,2019,56(21):23-29.
CHEN Jianqiang, YANG Junjie, LOU Zhibin. A new short-term load forecasting model based on XGBoost algorithm[J]. Electrical Measurement & Instrumentation,2019,56(21):23-29.
[10] 李丽敏,张明岳,温宗周,等.基于奇异谱分析法和长短时记忆网络组合模型的滑坡位移预测[J].信息与控制,2021,50(4):459-469,482.
LI Limin, ZHANG Mingyue, WEN Zongzhou.et al. Landslide displacement prediction based on singular spectrum analysis and a combined long short-term memory neural network model[J]. Information and Control, 2021,50(4):459-469,482.
[11] MIRJALILI S, LEWIS A. The whale optimization algorithm[J]. Advances in Engineering Software, 2016, 95: 51-67.
[12] 黄益绍,韩磊.基于RS-IPSOSVM的公交客流量预测方法[J].重庆交通大学学报(自然科学版),2020,39(11):11-19.
HUNAG Yishao, HAN Lei. Prediction method of bus passenger flow based on RS-IPSOSVM[J]. Journal of Chongqing Jiaotong University(Natural Science), 2020,39(11):11-19. |