[1] 胡荣, 吴文洁, 陈琳, 等. 气象因素对飞机进近飞行燃油效率的影响[J]. 北京航空航天大学学报, 2018, 44(4): 677-683.
HU Rong, WU Wenjie, CHEN Lin, et al. Influence of meteorological factors on aircraft fuel efficiency in approach flight [J]. Journal of Beijing University of Aeronautics and Astronautics, 2018, 44(4): 677-683.
[2] 钱宇, 毛子源, 向小军. 基于快速存取记录器数据的飞机滑行阶段的油耗模型优化[J]. 民航学报, 2018, 2(3): 1-4.
QIAN Yu, MAO Ziyuan, XIANG Xiaojun. Optimization of aircraft taxiing fuel consumption model based on QAR data [J]. Journal of Civil Aviation, 2018, 2(3): 1-4.
[3] BAKLACIOGLU T. Fuel flow-rate modelling of transport aircraft for the climb flight using genetic algorithms [J]. The Aeronautical Journal, 2015, 119(1212): 173-183.
[4] 何运成, 刘坤, 沈笑云, 等. 飞机燃油消耗估计模型仿真研究[J]. 计算机仿真, 2015, 32(5): 33-36.
HE Yuncheng, LIU Kun, SHEN Xiaoyun, et al. Simulation study of aircraft fuel consumption estimates model [J]. Computer Simulation, 2015, 32(5): 33-36.
[5] HONG N, LI L S. A data-driven fuel consumption estimation model for airspace redesign analysis [C] //2018 IEEE/AIAA 37th Digital Avionics Systems Conference (DASC). London: IEEE, 2018: 1-8.
[6] 魏志强, 胡杨. 基于BP神经网络的不可预期燃油计算方法[J]. 飞行力学, 2019, 37(6): 7-11.
WEI Zhiqiang, HU Yang. Unpredictable fuel calculation method based on BP neural network [J]. Flight Dynamics, 2019, 37(6): 7-11.
[7] 谷润平, 来靖晗, 魏志强. 基于改进BP神经网络的飞行落地剩油预测方法[J]. 飞行力学, 2020, 38(4): 76-80.
GU Runping, LAI Jinghan, WEI Zhiqiang. Prediction method of flight residual fuel based on improved BP neural network [J]. Flight Dynamics, 2020, 38(4): 76-80.
[8] 詹韧, 张登成, 郑无计. 基于PCA优化的神经网络飞机燃油消耗预测方法[J]. 测控技术, 2019, 38(5): 40-43.
ZHAN Ren, ZHANG Dengcheng, ZHENG Wuji. Prediction method of aircraft fuel consumption based on neural networks optimized by PCA [J]. Measurement & Control Technology, 2019, 38(5): 40-43.
[9] 邓聚龙. 灰色系统基本方法[M]. 武汉: 华中科技大学出版社, 2005.
DENG Julong. Basic Method of Grey System [M]. Wuhan: Huazhong University of Science & Technology Press, 2005.
[10] 董亚萍. 基于TensorFlow的中文分词训练优化[D]. 银川:宁夏大学, 2020.
DONG Yaping. Chinses Word-Breaker Training Optimization Based on TensorFlow [D]. Yinchuan: Ningxia University, 2020.
[11] 王恒涛. 基于TensorFlow、Keras与OpenCV的图像识别集成系统[J]. 电子测试, 2020(24): 53-54.
WANG Hengtao. Image recognition integrated system based on TensorFlow, Keras and OpenCV [J]. Electronic Test, 2020(24): 53-54.
[12] 向华荣, 曾敬. 基于卷积神经网络的汽车试验场外物入侵识别[J]. 重庆交通大学学报(自然科学版), 2020, 39 (1): 8-14.
XIANG Huarong, ZENG Jing. Recognition on invaders into automobile proving ground based on convolution neural network [J]. Journal of Chongqing Jiaotong University (Natural Science), 2020, 39 (1): 8-14.
[13] 周志华. 机器学习[M]. 北京:清华大学出版社, 2016.
ZHOU Zhihua. Machine Learning [M]. Beijing: Tsinghua University Press, 2016. |