[1] 交通运输部. 2020年交通运输行业发展统计公报[J]. 交通财会, 2021(6): 92-97.
Ministry of Transport. Statistical bulletin on the development of transportation industry in 2020[J]. Finance & Accounting for Transport, 2021(6): 92-97.
[2] 蔡晓禹, 雷财林, 彭博, 等. 基于驾驶行为和信息熵的道路交通安全风险预估[J]. 中国公路学报, 2020, 33(6): 190-201.
CAI Xiaoyu, LEI Cailin, PENG Bo, et al. Road traffic safety risk estimation based on driving behavior and information entropy[J]. China Journal of Highway and Transport, 2020, 33(6): 190-201.
[3] 戴剑勇, 黄晓庆, 王雯雯. 基于改进TOPSIS的道路交通风险网络排序研究[J]. 重庆交通大学学报(自然科学版), 2022, 41(4): 33-39.
DAI Jianyong, HUANG Xiaoqing, WANG Wenwen. Ranking of road traffic risk network based on improved TOPSIS[J]. Journal of Chongqing Jiaotong University (Natural Science), 2022, 41(4): 33-39.
[4] 陆建, 程泽阳. 道路交通网络安全风险辨识研究进展[J]. 东南大学学报(自然科学版), 2019, 49(2): 404-412.
LU Jian, CHENG Zeyang. Research and development of road traffic network security risk identification[J]. Journal of Southeast University (Natural Science Edition), 2019, 49(2): 404-412.
[5] 沙爱民, 蔡若楠, 高杰, 等. 基于级联卷积神经网络的公路路基病害识别[J]. 长安大学学报(自然科学版), 2019, 39(2): 1-9.
SHA Aimin, CAI Ruonan, GAO Jie, et al. Subgrade distresses recog-nition based on convolutional neural network[J]. Journal of Chang’an University (Natural Science Edition), 2019, 39(2): 1-9.
[6] 向华荣, 曾敬. 基于卷积神经网络的汽车试验场外物入侵识别[J]. 重庆交通大学学报(自然科学版), 2020, 39(1): 8-14.
XIANG Huarong, ZENG Jing. Recognition on invaders into automobile proving ground based on convolution neural network[J]. Journal of Chongqing Jiaotong University (Natural Science), 2020, 39(1): 8-14.
[7] HOWARD A, SANDLER M, CHEN Bo, et al. Searching for Mobile-NetV3[C]∥2019 IEEE/CVF International Conference on Computer Vision (ICCV). IEEE, 2019: 1314-1324.
[8] 刘洋, 冯全, 王书志. 基于轻量级CNN的植物病害识别方法及移动端应用[J]. 农业工程学报, 2019, 35(17): 194-204.
LIU Yang, FENG Quan, WANG Shuzhi. Plant disease identification method based on lightweight CNN and mobile application[J]. Transactions of the Chinese Society of Agricultural Engineering, 2019, 35(17): 194-204.
[9] 王韦祥, 周欣, 何小海, 等. 基于改进MobileNet网络的人脸表情识别[J]. 计算机应用与软件, 2020, 37(4): 137-144.
WANG Weixiang, ZHOU Xin, HE Xiaohai, et al. Facial expression recognition based on improved MobileNet[J]. Computer Applications and Software, 2020, 37(4): 137-144.
[10] 陈绵书, 于录录, 苏越, 等. 基于卷积神经网络的多标签图像分类[J]. 吉林大学学报(工学版), 2020, 50(3): 1077-1084.
CHEN Mianshu, YU Lulu, SU Yue, et al. Multi-label images classification based on convolutional neural network[J]. Journal of Jilin University (Engineering and Technology Edition), 2020, 50(3): 1077-1084.
[11] 陈智. 基于卷积神经网络的多标签场景分类[D]. 济南: 山东大学, 2015.
CHEN Zhi. Multi-label Scene Classification Using Convolutional Neural Network[D]. Jinan: Shandong University, 2015.
[12] ZHU Xizhou, CHENG Dazhi, ZHANG Zheng, et al. An empirical study of spatial attention mechanisms in deep networks[C]∥2019 IEEE/CVF International Conference on Computer Vision (ICCV). IEEE, 2019: 6687-6696.
[13] DUBEY S R, SINGH S K, CHAUDHURI B B. Activation functions in deep learning: A comprehensive survey and benchmark[J]. Neurocomputing, 2022, 503:92-108.
[14] LIU Zhuang, LI Jianguo, SHEN Zhiqiang, et al. Learning efficient convolutional networks through network slimming[C]∥2017 IEEE International Conference on Computer Vision (ICCV). IEEE, 2017: 2755-2763.
[15] ARYA D, MAEDA H, GHOSH S K, et al. RDD2020: An annotated image dataset for automatic road damage detection using deep learning[J]. Data in Brief, 2021, 36: 107133. |