中文核心期刊
CSCD来源期刊
中国科技核心期刊
RCCSE中国核心学术期刊

Journal of Chongqing Jiaotong University(Natural Science) ›› 2022, Vol. 41 ›› Issue (07): 9-13.DOI: 10.3969/j.issn.1674-0696.2022.07.02

• Transportation+Big Data & Artificial Intelligence • Previous Articles     Next Articles

Dynamic Programming Algorithm Based on ARIMA Model and K-Means Clustering Analysis

XU Jianmin1, ZANG Peng1, SHOU Yanfang2   

  1. (1. School of Civil Engineering and Transportation, South China University of Technology, Guangzhou 510640, Guangdong, China; 2. Guangzhou Institute of Modern Industrial Technology, South China University of Technology, Guangzhou 510640, Guangdong, China)
  • Received:2021-03-17 Revised:2021-07-15 Published:2022-07-25

基于ARIMA模型和K-means聚类分析的动态规划算法

徐建闽1,臧鹏1,首艳芳2   

  1. (1. 华南理工大学 土木与交通学院,广东 广州 510640; 2. 华南理工大学 广州现代产业技术研究院, 广东 广州 510640)
  • 作者简介:徐建闽(1960—),男,山东招远人,教授,博士,主要从事智能交通控制方面的研究。E-mail:aujmxu@scut.edu.cn
  • 基金资助:
    国家自然科学基金项目(61873098); 广东省科技计划项目(2016A030305001); 中央高校基本科研业务费专项资金项目(2018KZ17)

Abstract: Finding the shortest path is one of the important steps to optimize the transportation system. In order to find the shortest path, a dynamic programming algorithm based on ARIMA model and K-means clustering analysis was established by using historical and real-time floating-car data. The algorithm was tested in the second ring road area of Chengdu using Didi travel data. The results show that the newly proposed algorithm provides high-quality time solutions with low computation. The operation time is less than 2.010 minutes, the mean absolute percentage error is less than 6.5% and the invalid value ratio is less than 20%.

Key words: traffic engineering; dynamic programming algorithm; K-means clustering analysis; ARIMA model; the shortest path

摘要: 寻找最短路径是实现交通系统最优化的重要步骤之一。为寻找最短路径,利用历史和实时的浮动车数据,建立基于ARIMA模型和K-means聚类分析的动态规划算法。算法使用滴滴出行数据并在成都市二环区域内进行了测试。研究表明:新的算法以较低的计算量提供了高质量的时间解,运算时间均低于2.010 min,平均绝对百分误差低于6.5%,无效值比率小于20%。

关键词: 交通工程;动态规划算法;K-means聚类分析;ARIMA模型;最短路径

CLC Number: