[1] 初秀民, 刘潼, 马枫, 等. 山区航道 AIS 信号场强分布特性[J]. 交通运输工程学报, 2014(6):117-126.
CHU Xiumin, LIU Tong, MA Feng, et al. Distribution characteristic of AIS signal field intensity along mountainous waterway[J]. Journal of Traffic & Transportation Engineering, 2014, 6(1):117-126.
[2] OH S R, SUN J. Path following of under actuated marine surface vessels using line-of-sight based model predictive control[J]. Ocean Engineering, 2010,37 (2): 289-295.
[3] 马建文,涂兴华,吴小峰,等. 多自由度本船操纵运动仿真[J]. 上海海事大学学报, 2016,37(4): 32-35.
MA Jianwen, TU Xinghua, WU Xiaofeng, et al. Simulation on ownship manoeuvring motion with multi-degrees of freedom[J]. Journal of Shanghai Maritime University, 2016, 37(4):32-35.
[4] HU Q , CAI F , YANG C , et al. An algorithm for interpolating ship motion vectors[J]. Transnav the International Journal on Marine Navigation & Safety of Sea Transportation, 2014, 8(1):35-40.
[5] 徐婷婷,柳晓鸣,杨鑫.基于BP神经网络的船舶航迹实时预测[J].大连海事大学学报,2012,38(1):9-11.
XU Tingting, LIU Xiaoming, YANG Xin. BP neural network-based ship track real-time prediction [J]. Journal of Dalian Maritime University. 2012,38(1):9-11.
[6] 王体迎, 时鹏超, 刘蒋琼, 等. 基于门限递归单元循环神经网络的交通流预测方法研究[J]. 重庆交通大学学报(自然科学版), 2018, 37(11):76-82.
WANG Tiying, SHI Pengchao, LIU Jiangqiong, et al. Research on traffic flow prediction method based on gated recurrent unit recurrent neural network [J]. Journal of Chongqing Jiaotong University (Natural Science). 2018, 37(11):76-82.
[7] CHUNYAN L, JIANCHUN L , LINYUAN K . Performance comparison between GA-BP neural network and BP neural network[J]. Chinese Journal of Health Statistics, 2013, 30(2):173-494.
[8] KANARACHOS S, CHRISTOPOULOS S , CHRONEOS A , et al. Detecting anomalies in time series data via a deep learning algorithm combining wavelets, neural networks and Hilbert transform[J]. Expert Systems with Applications, 2017, 85, 292-304.
[9] REINHART R F, STEIL J J. A constrained regularization approach for input-driven recurrent neural networks[J]. Differential Equations & Dynamical Systems, 2011, 19(1-2):27-46.
[10] BASHEER I A. Artificial neural networks: fundamentals, computing, design, and application[J]. Journal of Microbiological Methods, 2000, 43(1):3-31.
[11] ZHANG X , GU N , YASRAB R , et al. GT-SGD: A novel gradient synchronization algorithm in training distributed recurrent neural network language models [C]//International Conference on Networking & Network Applications. Kathmanda:IEEE Computer Society, 2017.
[1] 初秀民, 刘潼, 马枫, 等. 山区航道 AIS 信号场强分布特性[J]. 交通运输工程学报, 2014(6):117-126.
CHU Xiumin, LIU Tong, MA Feng, et al. Distribution characteristic of AIS signal field intensity along mountainous waterway[J]. Journal of Traffic & Transportation Engineering, 2014, 6(1):117-126.
[2] OH S R, SUN J. Path following of under actuated marine surface vessels using line-of-sight based model predictive control[J]. Ocean Engineering, 2010,37 (2): 289-295.
[3] 马建文,涂兴华,吴小峰,等. 多自由度本船操纵运动仿真[J]. 上海海事大学学报, 2016,37(4): 32-35.
MA Jianwen, TU Xinghua, WU Xiaofeng, et al. Simulation on ownship manoeuvring motion with multi-degrees of freedom[J]. Journal of Shanghai Maritime University, 2016, 37(4):32-35.
[4] HU Q , CAI F , YANG C , et al. An algorithm for interpolating ship motion vectors[J]. Transnav the International Journal on Marine Navigation & Safety of Sea Transportation, 2014, 8(1):35-40.
[5] 徐婷婷,柳晓鸣,杨鑫.基于BP神经网络的船舶航迹实时预测[J].大连海事大学学报,2012,38(1):9-11.
XU Tingting, LIU Xiaoming, YANG Xin. BP neural network-based ship track real-time prediction [J]. Journal of Dalian Maritime University. 2012,38(1):9-11.
[6] 王体迎, 时鹏超, 刘蒋琼, 等. 基于门限递归单元循环神经网络的交通流预测方法研究[J]. 重庆交通大学学报(自然科学版), 2018, 37(11):76-82.
WANG Tiying, SHI Pengchao, LIU Jiangqiong, et al. Research on traffic flow prediction method based on gated recurrent unit recurrent neural network [J]. Journal of Chongqing Jiaotong University (Natural Science). 2018, 37(11):76-82.
[7] CHUNYAN L, JIANCHUN L , LINYUAN K . Performance comparison between GA-BP neural network and BP neural network[J]. Chinese Journal of Health Statistics, 2013, 30(2):173-494.
[8] KANARACHOS S, CHRISTOPOULOS S , CHRONEOS A , et al. Detecting anomalies in time series data via a deep learning algorithm combining wavelets, neural networks and Hilbert transform[J]. Expert Systems with Applications, 2017, 85, 292-304.
[9] REINHART R F, STEIL J J. A constrained regularization approach for input-driven recurrent neural networks[J]. Differential Equations & Dynamical Systems, 2011, 19(1-2):27-46.
[10] BASHEER I A. Artificial neural networks: fundamentals, computing, design, and application[J]. Journal of Microbiological Methods, 2000, 43(1):3-31.
[11] ZHANG X , GU N , YASRAB R , et al. GT-SGD: A novel gradient synchronization algorithm in training distributed recurrent neural network language models [C]//International Conference on Networking & Network Applications. Kathmanda:IEEE Computer Society, 2017. |