中文核心期刊
CSCD来源期刊
中国科技核心期刊
RCCSE中国核心学术期刊

Journal of Chongqing Jiaotong University(Natural Science) ›› 2020, Vol. 39 ›› Issue (06): 19-24.DOI: 10.3969/j.issn.1674-0696.2020.06.04

• Traffic & Transportation Engineering • Previous Articles     Next Articles

Traffic Manner Judgment for Bicyclist

WANG Shaohua1,2, HUANG Jianling1,3, CHEN Yanyan1, LIU Zhuo1, CHEN Ning1   

  1. (1. Beijing Key Laboratory of Traffic Engineering, Beijing University of Technology, Beijing 100124, China; 2. Tianjin Collaborative Innovation Center of Traffic Safety and Control, Tianjin University of Technology and Education, Tianjin 300222, China; 3. Beijing Transportation Information Center, Beijing 100161, China)
  • Received:2018-08-07 Revised:2018-11-15 Online:2020-06-26 Published:2020-06-29

自行车驾驶员交通行为方式判定研究

王少华1,2,黄建玲1,3,陈艳艳1,刘卓1,陈宁1   

  1. (1. 北京工业大学 北京市交通工程重点实验室,北京 100124; 2. 天津职业技术师范大学 天津市交通安全与控制协同创新中心,天津 300222; 3. 北京市交通信息中心,北京 100161)
  • 作者简介:王少华(1983—),男,陕西宝鸡人,讲师,博士研究生,主要从事交通安全方面的研究。E-mail:shaohuawang@aliyun.com。 通信作者:陈艳艳(1970—),女,河南郑州人,教授,博士,主要从事交通安全、规划与管理方面的研究。E-mail:cdyan@bjut.edu.cn。
  • 基金资助:
    国家重点研发计划项目(2017YFC0803903);天津市自然科学基金重点项目(16JCZDJC38200);天津市教委重点调研课题项目(JWDY-20171044)

Abstract: In view that the traffic manner of the involved persons in the traffic accidents plays an important role for responsibility identification in China, a method of judging the traffic manner of bicyclists based on feature selection was proposed. After collecting traffic accident case data and constructing combination features, the data imbalance processing was carried out on the basis of SMOTE algorithm. The three kinds of multi-classification models, that is support vector machine, random forest and artificial neural network, were built according to different data sets and evaluated by the way of cross validation and receiver operating characteristic curve. The optimal classification accuracy and key characteristic variables were ascertained. The results show that the identification accuracy rate of the proposed method is 78.83% in the combined data sets and 82.19% in the original sampling data sets. Bicycle saddle damage, bicycle saddle rotation, vehicle type and bicycle handlebar rotation are the key characteristic variables for traffic manner judgement.

Key words: traffic engineering, judicial identification, traffic manner, feature selection, bicycle

摘要: 鉴于我国交通事故中涉案者交通行为方式对于事故责任认定具有重要作用,提出一种基于特征选择的自行车驾驶员交通行为方式判定方法。采集交通事故案例数据并构建组合特征后,基于SMOTE算法进行数据不平衡处理。针对不同数据集构建支持向量机、随机森林和人工神经网络这3种多分类模型,运用交叉验证和受试者工作特征曲线进行模型评价,确定最优分类准确率和关键特征变量。研究表明:该判定方法准确率在组合数据集可达78.83%,在原始采样数据集可达82.19%;车座损伤、车座旋转、机动车类型、车把旋转是交通行为方式判定的关键特征变量。

关键词: 交通工程, 司法鉴定, 交通行为方式, 特征选择, 自行车

CLC Number: