中文核心期刊
CSCD来源期刊
中国科技核心期刊
RCCSE中国核心学术期刊

Journal of Chongqing Jiaotong University(Natural Science) ›› 2020, Vol. 39 ›› Issue (07): 33-39.DOI: 10.3969/j.issn.1674-0696.2020.07.06

• Traffic & Transportation Engineering • Previous Articles     Next Articles

Comparison of Multiple Forecast Models of Urban Traffic Carbon Emissions

GAO Jinhe1, HUANG Weiling2, JIANG Haopeng3   

  1. (1.School of Civil Engineering and Architecture, East China University of Technology, Nanchang 330013, Jiangxi, China; 2.Yangtze River College, East China University of Technology, Nanchang 344000, Jiangxi, China; 3.School of Civil Engineering and Transportation, Hebei University of Technology, Tianjin 300401, China)
  • Received:2019-02-26 Revised:2019-05-14 Online:2020-07-16 Published:2020-07-21

城市交通碳排放预测的多模型对比分析

高金贺1,黄伟玲2,蒋浩鹏3   

  1. (1. 东华理工大学 土木与建筑工程学院,江西 南昌330013; 2. 东华理工大学 长江学院,江西 南昌 344000; 3. 河北工业大学 土木与交通学院,天津 300401)
  • 作者简介:高金贺(1981—),男,辽宁沈阳人,副教授,博士,主要从事岩土工程方面的研究。E-mail:12813630@qq.com 通信作者:黄伟玲(1990—),女,江西南昌人,助教,硕士,主要从事岩土工程方面的研究。E-mail:1241547553@qq.com
  • 基金资助:
    江西省科技厅科技计划项目(2016BBG70084)

Abstract: In order to find a suitable prediction method for carbon emission of urban traffic, 7 indexes were selected as the influencing factors of carbon emission of urban traffic based on the STIRPAT model. The 7 indexes included total population, per capita GDP, vehicle ownership, carbon emission intensity, urbanization rate, passenger turnover, cargo turnover and etc.. The prediction models of GA-SVM, PSO-SVM and GS-SVM were established respectively.And the relevant indicators of traffic carbon emissions from 1995 to 2016 were taken as the basic data for case study. The results show that: compared with PSO-SVM and GS-SVM, the correlation coefficients of training set of GA-SVM increase by 2.74% and 1.07% respectively, and the correlation coefficients of test set of GA-SVM increase by 1.04% and 0.29% respectively. Compared with the other two prediction models, GA-SVM model has good learning and generalization ability, which indicates that GA-SVM model is more suitable for the prediction and analysis of urban traffic carbon emissions.

Key words: traffic and transportation engineering, carbon emissions, GA-SVM model, influence index

摘要: 为寻找合适的城市交通运输碳排放预测方法,基于STIRPAT模型,选取人口总量、人均GDP、机动车保有量、碳排放强度、城镇化率、旅客周转量和货物周转量等7项指标作为城市交通运输碳排放影响因素,分别建立基于遗传算法优化支持向量机、粒子群优化支持向量机、网格搜索优化支持向量机预测模型,并以1995—2016年交通运输碳排放相关指标作为基础数据做实例分析。结果表明:GA-SVM对比PSO-SVM与GS-SVM所得出训练集的相关系数分别增长了2.74%和1.07%,测试集的相关系数分别增长了1.04%和0.29%,较其它两种预测模型具有良好的学习和推广能力,说明GA-SVM模型更适合对城市交通碳排放进行预测分析。

关键词: 交通运输工程, 碳排放预测, GA-SVM模型, 影响指标

CLC Number: