中文核心期刊
CSCD来源期刊
中国科技核心期刊
RCCSE中国核心学术期刊

Journal of Chongqing Jiaotong University(Natural Science) ›› 2012, Vol. 31 ›› Issue (5): 970-973.DOI: 10.3969/j.issn.1674-0696.2012.05.13

Previous Articles     Next Articles

Pavement Performance Evaluation by Discrete Hopfield Neural Network

Zhou Yuanyuan1,Qi Jianrong1,Zhou Junchang2,Zhang Li1   

  1. 1.School of Automobile & Traffic Engineering,Jiangsu University,Zhenjiang 212013,Jiangsu,China; 2.Jiangsu Transportation Research Institute Co.,Nanjing 210017,Jiangsu,China
  • Received:2011-04-27 Revised:2012-03-07 Online:2012-10-15 Published:2015-01-22

离散Hopfield 神经网络在沥青路面 使用性能评价中的应用

周园园1,亓建荣1,周俊昌2,张利1   

  1. 1.江苏大学汽车与交通工程学院,江苏镇江212013; 2.江苏省交通科学研究院,江苏南京210017
  • 作者简介:周园园(1985—),男,江苏淮安人,硕士研究生,主要从事交通规划与管理方面的研究。E-mail:547982644@qq.com。

Abstract: TIn order to make the performance evaluation of asphalt pavement more scientific and reasonable,the author put forward an evaluation method based on Discrete Hopfield Neural Network ( DHNN) . This method took comprehensive consideration of four affecting factors including pavement ride quality,pavement condition,pavement structure bearing capacity and pavement skid resistance. Then it designed and simulated the DHNN programming to comprehensively evaluate the pavement performance. Finally,the method was verified by an example and the calculation has been compared with the traditional evaluation methods. Results showed that the method was reasonable and effective. Compared with others,this method was simple,cheap and easy to promote and has better superiority.

Key words: asphalt pavement, DHNN, pavement performance, pavement quality index( PQI)

摘要: 为使沥青路面使用性能评价更加科学合理,提出了基于离散Hopfield 神经网络的评价方法,该方法综合了行 驶质量、路面破损状况、结构承载力和路面抗滑性能等4 个主要内容对路面使用性能的影响。通过设计离散 Hopfield 神经网络对沥青路面使用性能进行了综合评价,最后通过实例计算并将计算结果与传统方法的评价结果进 行比较。结果表明: 该方法合理有效,且相对于传统的方法操作简单、成本更低、易推广,具有一定的优越性。

关键词: 沥青路面, 离散Hopfield 神经网络, 使用性能, PQI

CLC Number: