[1] 王荣本, 王起, 初秀氏. 路面破损图像识别研究进展[J]. 吉林大学学报(工学版), 2002, 32(4): 91-97.
WANG Rongben, WANG Qi, CHU Xiushi. Developments of research on road pavement surface distress image recognition[J]. Journal of Jilin
University (Engineering and Technology Edition), 2002, 32(4): 91-97.
[2] 蒋阳升, 彭博, 韩世凡, 等. 路面破损状况检测、评价、预测与管理系统研究进展[J]. 交通运输工程与信息学报, 2013,11 (4):1-9.
JIANG Yangsheng, PENG Bo, HAN Shifan, et al. Review of research on inspection, evaluation, prediction and management systems of
pavement distress condition[J]. Journal of Transportation Engineering and Information, 2013, 11(4):1-9.
[3] WANG K C P, HOU Z Q, GONG W G. Automated road sign inventory system based on stereo vision and tracking[J]. Computer-Aided
Civil and Infrastructure Engineering, 2010, 25(6): 468-477.
[4] LI Q, YAO M, YAO X, et al. A real-time 3D scanning system for pavement distortion inspection[J]. Measurement Science &
Technology, 2010, 21(1):015702.
[5] TSAI Y, LI F. Critical assessment of detecting asphalt pavement cracks under different lighting and low intensity contrast
conditions using emerging 3D laser technology[J]. Journal of Transportation Engineering, 2012, 138(5): 649-656.
[6] SUN X M, HUANG J P, LIU W Y, et al. Pavement crack characteristic detection based on sparse representation[J]. EURASIP Journal
on Advances in Signal Processing, 2012, 2012:191.
[7] ZHANG A, LI Q J, WANG K C P, et al. Matched filtering algorithm for pavement cracking detection[J]. Journal of the
Transportation Research Board, 2013, 2367(1): 30-42.
[8] GUAN H Y, LI J, YU Y T, et al. Iterative tensor voting for pavement crack extraction using mobile laser scanning data[J]. IEEE
Transactions on Geoscience and Remote Sensing, 2014, 53(3): 1527-1537.
[9] PENG B, WANG K C P, CHEN C. Automatic crack detection by multi-seeding fusion on 1mm resolution 3D pavement images[C]//Second
Transportation & Development Congress. Orlando, Florida, USA:[s.n.], 2014: 543-552.
[10] 彭博, WANG K C P,陈成,等.基于各向异性测度的路面三维图像裂缝识别[J].西南交通大学学报, 2014, 49(5): 888-895.
PENG Bo, WANG K C P, CHEN Cheng, et al. 3D pavement crack image detection based on anisotropy measure[J]. Journal of Southwest
Jiaotong University, 2014, 49(5): 888-895.
[11] OTSU N. A threshold selection method from gray-level histograms[J]. Systems, Man and Cybernetics, IEEE Transactions on, 1979,
9(1): 62-66.
[12] CANNY J. A computational approach to edge detection[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 1986,
8(6): 679-698.
[13] WANG H, ZHU N, WANG Q. Segmentation of pavement cracks using differential box-counting approach[J]. Journal of Harbin
Institute of Technology, 2007, 39(1): 142-144.
[14] GAVILáN M, BALCONES D, MARCOS O, et al. Adaptive road crack detection system by pavement classification[J]. Sensors, 2011,
11(10): 9628-9657.
[15] TSAI Y, KAUL V, MERSEREAU R M. Critical assessment of pavement distress segmentation methods[J]. Journal of Transportation
Engineering, 2010, 136(1): 11-19.
[16] HU Y, ZHAO C X, WANG H N. Automatic pavement crack detection using texture and shape descriptors[J]. IETE Technical Review,
2010, 27(5): 398-405.
[17] ZOU Q, CAO Y, LI Q Q, et al. CrackTree: automatic crack detection from pavement images[J]. Pattern Recognition Letters, 2012,
33(3): 227-238.
[18] 李景仲,卢艳军. 三维图形消隐方法的研究[J]. 辽宁省交通高等专科学校学报, 2001, 3(4): 11-14.
LI Jingzhong, LU Yanjun. Study of the hiding technology about 3D drawing[J]. Journal of Liaoning Provincial College of
Communications, 2001, 3(4): 11-14.
[19] 沈沉, 沈向洋, 马颂德. 基于图像的光照模型研究综述[J]. 计算机学报, 2000, 23(12): 1261-1269.
SHEN Chen, SHEN Xiangyang, MA Songde. A survey of image-based illumination model[J]. Chinese Journal of Computers, 2000, 23(12):
1261-1269.
[20] WANG K C P, HOU Z Q, WILLIAMS S. Precision test of cracking surveys with the automated distress analyzer[J]. Journal of
Transportation Engineering, 2011, 137(8), 571-579.
[21] LI Q Q, ZOU Q, LIU X L. Pavement crack classification via spatial distribution features[J]. EURASIP Journal on Advances in
Signal Processing, 2011, 6854(5): 589-597. |