中文核心期刊
CSCD来源期刊
中国科技核心期刊
RCCSE中国核心学术期刊

重庆交通大学学报(自然科学版) ›› 2018, Vol. 37 ›› Issue (1): 46-53.DOI: 10.3969/j.issn.1674-0696.2018.01.08

• 道路与铁道工程 • 上一篇    下一篇

基于三维虚拟路面的裂缝自动检测算法

彭博,蔡晓禹,李少博,张有节   

  1. (重庆交通大学 交通运输学院,重庆 400074)
  • 收稿日期:2016-11-07 修回日期:2017-02-16 出版日期:2018-01-15 发布日期:2018-01-15
  • 作者简介:彭博(1986—),男,四川南充人,副教授,博士,主要从事路面破损图像检测、交通视频检测方面的研究。E-mail: pengbo351@126.com。 通信作者:蔡晓禹(1979—),男,四川达州人,教授,博士,主要从事交通规划、智能交通方面的研究。E-mail: caixiaoyu@vip.163.com。
  • 基金资助:
    国家自然科学基金项目(61703064);重庆市社会事业与民生保障科技创新专项项目(cstc2015shms-ztzx30002);重庆市教委科学研究项目 (KJ1600513);重庆市科委基础科学与前沿技术研究专项项目(cstc2017jcyjAX0473);重庆交通大学科研启动项目(15JDKJC-A002)

Automatic Crack Detection Algorithm Based on 3D Virtual Pavement

PENG Bo, CAI Xiaoyu, LI Shaobo, ZHANG Youjie   

  1. (School of Traffic and Transportation, Chongqing Jiaotong University, Chongqing 400074, P. R. China)
  • Received:2016-11-07 Revised:2017-02-16 Online:2018-01-15 Published:2018-01-15

摘要: 为了在考虑路面三维特征的基础上快速、准确、完整地识别裂缝,基于三维虚拟路面提出了裂缝自动并行识别算法。首先,对1 mm/像素的路面深 度图像进行消隐处理和光照模型处理建立三维虚拟路面,通过4个角度的立体投影产生4幅投影图像(Ω1~Ω4);然后,分别对Ω1~Ω4进行降维处理、裂缝 识别(包括强度验证及对称性检测)和裂缝连接,获得阴影区裂缝图像Ωs1~Ωs4及反光区裂缝图像Ωr1~Ωr4;最后,有效融合Ωs1~Ωs4及Ωr1~Ωr4的裂 缝信息并进行深度验证和滑动去噪处理,获得裂缝图像。基于255张图像(4 096×2 048)的测试显示:算法具有较高的准确率(平均80.34%)和召回率(平均 83.89%),以80.47%的F值优于ADA3D算法;此外,并行框架有利于程序并行化,能有效提高运算速度。

关键词: 道路工程, 识别算法, 图像处理, 路面裂缝, 并行框架, 三维虚拟路面, 立体投影, 裂缝种子

Abstract: In order to detect cracks accurately, precisely and completely with the consideration of stereoscopic features of pavement, an automatic parallel crack recognition algorithm based on 3D virtual pavement was proposed. Firstly, 3D virtual pavement was established by hiding processing and illumination model processing on 1mm/pixel pavement depth images, and four projection images, Ω1~Ω4 , were generated via stereoscopic projection at four angles over it. Then, dimension reduction, crack recognition (intensity verification, symmetry check) and crack connection were conducted on Ω1~Ω4 respectively. Correspondingly, shadowed crack images Ωs1~Ωs4 and reflection crack images Ωr1~Ωr4 were obtained. At last, the crack information of Ωs1~Ωs4 and Ωr1~Ωr4 were fused, examined by depth verification and filtering denoised, yielding the final crack image. Test results based on 255 images (4 096×2 048) show that, the proposed algorithm achieves relatively high precision (averaging 80.34%) and recall rate (averaging 83.89%). It outperforms ADA3D algorithm with an F score of 80.47%. Furthermore, the parallel framework of the proposed algorithm helps parallel programming, which can improve computation speed effectively.

Key words: highway engineering, recognition algorithm, image processing, pavement cracking, parallel framework, 3D virtual pavement, stereoscopic projection, crack seeds

中图分类号: