重庆交通大学学报(自然科学版) ›› 2021, Vol. 40 ›› Issue (11): 118-127.DOI: 10.3969/j.issn.1674-0696.2021.11.18
• 交通基础设施工程 • 上一篇
苏曼曼1, 司春棣2, 张洪亮3
收稿日期:
2020-02-24
修回日期:
2020-09-04
发布日期:
2021-11-24
作者简介:
苏曼曼(1988—),女,山东济宁人,讲师,博士,主要从事路面材料计算与仿真方面的研究。E-mail:ldusuman@126.com
SU Manman1, SI Chundi2, ZHANG Hongliang3
Received:
2020-02-24
Revised:
2020-09-04
Published:
2021-11-24
摘要: 为揭示纳米ZnO改性剂对沥青物理性能改善的机理,采用分子动力学模拟技术对纳米ZnO改性沥青进行模拟研究。借助沥青四组分代表性化合物,结合沥青的元素含量、四组分相对含量试验结果构建了沥青分子模型。根据纳米ZnO形貌特点,构建了不同粒径的纳米ZnO簇团模型及纳米ZnO/沥青共混体系模型。采用分子动力学方法计算了纳米ZnO与沥青分子间的相互作用,分析了纳米ZnO在沥青中的扩散性能,研究了纳米ZnO对沥青物理模量及沥青分子结构的影响,根据分子动力学模拟结果揭示了纳米ZnO改性沥青的改性机理。研究结果表明:模拟温度为150 ℃左右时,纳米ZnO/沥青共混体系的范德华相互作用和非键接相互作用达到最大值,体系结构最稳定;纳米ZnO颗粒增大了沥青体系的体积模量、剪切模量和弹性模量,改善了沥青的高温性能,从而提高了沥青的抗剪切能力;同时,纳米ZnO增大了沥青质与胶质体系分子间的芳环质心距离,减缓了强极性组分的堆积,加强了支链在分子间的延展性,增加了沥青结构的致密性,从而促使沥青具有更稳定的胶体结构、更好的物理性能。
中图分类号:
苏曼曼1, 司春棣2, 张洪亮3. 纳米ZnO改性沥青分子动力学模拟研究[J]. 重庆交通大学学报(自然科学版), 2021, 40(11): 118-127.
SU Manman1, SI Chundi2, ZHANG Hongliang3. Molecular Dynamics Simulation of Nano-ZnO Modified Asphalt[J]. Journal of Chongqing Jiaotong University(Natural Science), 2021, 40(11): 118-127.
[1] SALTAN M, TERZI S, KARAHANCER S. Performance analysis of nano modified bibumin and hot mix asphalt [J]. Construction and Building Materials, 2018, 173: 228-237. [2] HAMEDIG H, ESMAEILI N. Investigating of effects of nano-materials on the moisture susceptibility of asphalt mixtures containing glass cullets [J ]. AUT Journal of Civil Engineering, 2019, 3(1):107-118. [3] SHAFABAKHSH G H, ANI O J. Experimental investigation of effect of nano TiO2/SiO2 modified bitumen on the rutting and fatigue performance of asphalt mixtures containing steel slag aggregates[J]. Construction and Building Materials, 2015, 98: 692-702. [4] WANG D, LENG Z, YU H, et al. Durability of epoxy-bonded TiO2-modified aggregate as a photocatalytic coating layer for asphalt pavement under vehicle tire polishing[J]. Wear, 2017, 382-383: 1-7. [5] XU Xu, GUO Haoyan, WANG Xiaofeng, et al. Physical properties and anti-aging characteristics of asphalt modified with nano-zinc oxide powder [J]. Construction and Building Materials, 2019,224: 732-742. [6] LIU H Y, ZHANG H L, HAO P W, et al. The effect of surface modifiers on ultraviolet aging properties of nano-zinc oxide modified bitumen [J]. Petroleum Science and Technology, 2015, 33(1): 72-78. [7] ZHANG Hongliang, SU Manman, ZHAO Shifeng, et al. High and low temperature properties of nano-particles/polymer modified asphalt [J]. Construction and Building Materials, 2016, 114: 323-332. [8] ZHU Juncai, ZHANG Kun, LIU Kefei, et al. Adhesion characteristics of graphene oxide modified asphalt unveiled by surface free energy and AFM- scanned micro-morphology[J].Construction and Building Materials, 2020, 244:118404. [9] LIRui, PEI Jianzhong, SUN Changle. Effect of nano-ZnO with modified surface on properties of bitumen [J]. Construction and Building Materials, 2015, 98: 656-661. [10] ABDELRAHMAN M, KATTI D R, GHAVIBAZOO A, et al. Engineer-ing physical properties of asphalt binders throughnanoclay-asphalt interactions [J]. Journal of Materials in Civil Engineering, 2014, 26(12): 04014099.1-04014099.9. [11] 张庆,侯德华,史纪村.橡胶沥青的微观表征方法及其微观特性综述[J].材料导报,2019, 33(增刊2):247-253. ZHANG Qing, HOUDehua, SHI Jicun. Research progress of microscopic characterization of rubber asphalt [J]. Materials Reports, 2019, 33(Sup 2):247-253. [12] 陈渊召,陈爱玖,李超杰,等. 纳米氧化锌改性沥青混合料性能分析[J]. 中国公路学报, 2017, 30(7):25-32. CHEN Yuanzhao, CHEN Aijiu, LI Chaojie, et al. Analysis of performance for nano-ZnO modified asphalt mixture [J]. China Journal of Highway Transport, 2017, 30(7):25-32. [13] WANG Peng, ZHAI Fei, DONG Zejiao, et al. Micromorphology of asphalt modified by polymer and carbon nanotubes through molecular dynamics simulation and experiments: role of strengthened interfacial interactions [J]. Energy & Fuel, 2018, 32(2): 1179-1187. [14] SU Manman, SI Chundi, ZHANG Zengping, et al. Molecular dynamics study on influence of nano-ZnO/SBS on physical properties and molecular structure of asphalt binder [J]. Fuel, 2020, 263: 116777. [15] 苏曼曼, 张洪亮, 张永平, 等. SBS与沥青相容性及力学性能的分子动力学模拟研究 [J].长安大学学报(自然科学版),2017,37(3):24-32. SU Manman, ZHANG Hongliang, ZHANG Yongping, et al. Miscibility and mechanical properties of SBS and asphalt blends based on molecular dynamics simulation [J]. Journal of Changan University (Natural Science Edition), 2017,37(3):24-32. [16] HERMANN J, DISTASIO J R A, TKATCHENKO A, et al. First-principles models for van der Waals interactions in molecules and materials: Concepts, theory and applications[J]. Chemistry Reviews, 2017,117(6):4714-4758. [17] DUDEK G, BORYS P. A simple methodology to estimate the diffu-sion coefficient in pervaporation-based purification experiments[J]. Polymers, 2019,11(2):343-351. [18] TONG Zhifang, XIE Yunbing, ZHANG Yuheng. Molecular dynamics simulation on the interaction between polymer inhibitors andβ- dicalcium silicate surface [J]. Journal of Molecular Liquids, 2018, 259:65-75. [19] MACKAY M E, TUTEJA A, DUXBURY P M, et al. General strategies for nanoparticle dispersion [J].Science, 2006, 311(5768): 1740-1743. [20] SCHULER B, MEYER G, PENA D, et al. Unraveling the molecular structures of aspahltene by atomic force microscopy[J]. Journal of the American Chemical Society, 2015,137(31):9870-9876. [21] GREENFIELD M L. Molecularmodelling and simulation of asphaltenes and bituminous materials [J]. International Journal of Pavement Engineering, 2011, 12(4): 325-341. [22] ZHANG Liqun, GREENFIELD M L. Analyzing properties of model asphalts using molecular simulation [J]. Energy & Fuels, 2007, 21(3): 1712- 1716. [23] YAO Hui, DAI Qingli,YOU zhanping. Molecular dynamics simulation of physicochemical properties of the asphalt model[J]. Fuel, 2016, 164: 83-93. [24] XUGuangji, WANG Hao. Study of cohesion and adhesion properties of asphalt conncrete with molecular dynamics simulation[J]. Computational Materials Science, 2016, 112:161-169. [25] 王鹏,董泽蛟,谭忆秋,等. 基于分子模拟的沥青蜂状结构成因探究[J].中国公路学报, 2016, 29(3):9-16. WANG Peng, DONG Zejiao, TAN Yiqiu, et al. Research on the formation mechanism of bee-like structures in asphalt binders based on molecular simulations[J]. China Journal of Highway Transport, 2016, 29(3):9-16. [26] 郭连权, 李大业, 刘嘉慧,等.ZnO晶体晶格常数及弹性模量的第一性原理计算[J]. 人工晶体学报,2010, 39(增刊1):264-267. GUO Lianqun, LI Daye, LIU Jiahui, et al. First principle calculation of lattice constant and elastic modulus of nano-ZnO crystal [J]. Journal of Synthetic Crystal, 2010, 39(Sup 1):264-267. |
[1] | 朱洪洲1,2,潘岳1,王大谦1,胡蓝心1,何兆益2. 沥青稳定碎石疲劳性能关键影响因素分析[J]. 重庆交通大学学报(自然科学版), 2021, 40(09): 124-130. |
[2] | 姚爱玲1,王军伟2,许敏3,杨孟乾4,杨涛1. 水泥稳定碎石基层沥青路面隆起开裂数值分析[J]. 重庆交通大学学报(自然科学版), 2021, 40(06): 105-111. |
[3] | 赵全满,任瑞波,刘瑶,李志刚,户桂灵. 城市道路检查井井周路面破坏机理[J]. 重庆交通大学学报(自然科学版), 2021, 40(05): 87-94. |
[4] | 王清洲1,孙超1,檀奥龙2,魏连雨1. 膨胀性泥岩重塑土膨胀力试验研究[J]. 重庆交通大学学报(自然科学版), 2021, 40(04): 112-117. |
[5] | 王民1,2,尚飞1,肖丽1,包广志3. 钢桥面浇注式沥青铺装复合梁疲劳损伤规律分析[J]. 重庆交通大学学报(自然科学版), 2021, 40(03): 84-88. |
[6] | 李升连1,梁乃兴2,曾晟2. 采集方法对数字图像沥青混合料离析评价影响研究[J]. 重庆交通大学学报(自然科学版), 2021, 40(03): 103-107. |
[7] | 周建昆1,曹源文2,温永杰2,赵江1,白丽萍3. 不同高度下摊铺路面的数字图像差异性研究[J]. 重庆交通大学学报(自然科学版), 2021, 40(02): 89-94. |
[8] | 李志勇,黄桦. 基于明色铺装对隧道照明质量的研究[J]. 重庆交通大学学报(自然科学版), 2021, 40(02): 101-107. |
[9] | 叶险峰,韩以江,祝敕捷,程雍. 基于改进变权-TOPISIS的锚固边坡失稳风险评估[J]. 重庆交通大学学报(自然科学版), 2021, 40(02): 108-115. |
[10] | 李浩1,2,王选仓1,房娜仁1,许新权3. 基于敏感度的沥青路面结构应力传递行为[J]. 重庆交通大学学报(自然科学版), 2021, 40(01): 119-126. |
[11] | 袁高昂1,李德文2,潘军利2,郝培文1. 基于疲劳寿命递增的LSPM下面层半刚性路面结构优选[J]. 重庆交通大学学报(自然科学版), 2020, 39(12): 80-87. |
[12] | 宋金华,辛鹏飞. FWD荷载下沥青路面弯沉盆几何特性分析[J]. 重庆交通大学学报(自然科学版), 2020, 39(11): 92-98. |
[13] | 刘洪辉,李晓娟. 水性环氧乳化沥青高温流变性能研究[J]. 重庆交通大学学报(自然科学版), 2020, 39(10): 67-73. |
[14] | 周水文1,2,3,张晓华1,2,3,张蓉1,2,3,赵坤4,王建壮1,2,3. 环路热管融冰雪效果影响因素试验分析[J]. 重庆交通大学学报(自然科学版), 2020, 39(10): 85-92. |
[15] | 李海莲1,2,林梦凯1,2,王起才1,2. 高速公路沥青路面使用性能模糊区间评价方法研究[J]. 重庆交通大学学报(自然科学版), 2020, 39(09): 80-87. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||