[1] 王耀东,余祖俊,白彪,等. 基于图像处理的地铁隧道裂缝识别算法研究[J].仪器仪表学报,2014,35(7):1489-1496.
WANG Yaodong, YU Zujun, BAI Biao, et al. Research on image processing based subway tunnel crack identification algorithm[J]. Chinese Journal of Scientific Instrument, 2014, 35(7): 1489-1496.
[2] 张振海,尹晓珍,任倩.基于自适应均值的地铁隧道裂缝图像滤波算法[J].重庆交通大学学报(自然科学版),2019,38(6):1-5.
ZHANG Zhenhai, YIN Xiaozhen, REN Qian. Image filtering algorithm for subway tunnel cracks based on self-adaptive mean[J]. Journal of Chongqing Jiaotong University (Natural Science), 2019, 38(6): 1-5.
[3] NOH Y, KOO D, KANG Y M, et al. Automatic crack detection on con-crete images using segmentation via fuzzy C-means clustering[C]∥ 2017 International Conference on Applied System Innovation (ICASI).
Manila, Philippine: IEEE, 2017: 877-880.
[4] HUTHWOHL P, BRILAKIS I. Detecting healthy concrete surfaces[J]. Advanced Engineering Informatics, 2018, 37(8):150-162.
[5] DINH T H, HA Q P, LA H M .Computer vision-based method for con-crete crack detection[C]∥ International Conference on Control. Phuket, Thailand: IEEE, 2017:1183-1188.
[6] 王博,王霞,陈飞,等.航拍图像的路面裂缝识别[J].光学学报, 2017,37(8):126-132.
WANG Bo, WANG Xia, CHEN Fei, et al. Pavement crack recognition based on aerial image [J]. Acta Optica Sinica, 2017,37(8):126-132.
[7] 朱力强,白彪,王耀东,等. 基于特征分析的地铁隧道裂缝识别算法[J].铁道学报,2015,37(5):64-70.
ZHU Liqiang, BAI Biao, WANG Yaodong, et al. Subway tunnel crack identification algorithm based on feature analysis[J]. Journal of the China Railway Society, 2015, 37 (5): 64-70.
[8] 王耀东,朱力强,史红梅,等. 基于局部图像纹理计算的隧道裂缝视觉检测技术[J].铁道学报,2018,40(2):82-90.
WANG Yaodong, ZHU Liqiang, SHI Hongmei, et al. Visual detection of tunnel cracks based on local image texture calculation[J]. Journal of the China Railway Society, 2018, 40(2): 82-90.
[9] 屈正庚, 牛少清. 一种改进的自适应加权中值滤波算法研究[J]. 计算机技术与发展,2018,28(12):86-90.
QU Zhenggeng, NIU Shaoqing. Research on an improved adaptive weighted median filtering algorithm[J]. Computer Technology and Development, 2018, 28(12): 86- 90.
[10] 韦春桃,余俊辰,赵平,等.基于自适应阈值的细小裂缝与微灰度差异裂缝自动检测方法[J].中外公路,2019,39(1):58-63.
WEI Chuntao, YU Junchen, ZHAO Ping, et al. Automatic detection method of small cracks and micro grayscale difference cracks based on adaptive threshold[J]. Journal of China and Foreign Highway, 2019, 39(1): 58-63.
[11] 王睿,漆泰岳,雷波,等. 隧道衬砌裂缝特征提取方法研究[J].岩石力学与工程学报,2015,34(6):1211-1217.
WANG Rui, QI Taiyue, LEI Bo, et al. Characteristic extraction of cracks of tunnel lining[J]. Chinese Journal of Rock Mechanics and Engineering, 2015, 34(6): 1211-1217.
[12] 占继刚. 基于图像处理的桥梁底面裂缝检测识别方法研究[D]. 北京:北京交通大学,2017.
ZHAN Jigang. Study on the Bridge Crack Inspection and Recognition Method Based on Image Processing [D]. Beijing: Beijing Jiaotong University, 2017.
[13] YU Tiantang, ZHU Aixi, CHEN Yingying. Efficient crack detection method for tunnel lining surface cracks based on infrared images[J]. Journal of Computing in Civil Engineering,2017,31(3):1-11.
[14] CHENG Yuhua, TIAN Lulu, YIN Chun, et al. A magnetic domain spots filtering method with self-adapting threshold value selecting for crack detection based on the [J]. Nonlinear Dynamics,2016,86(2):741-750.
[15] 张棋,贾方秀,殷婷婷. 基于改进Sobel算法的实时图像边缘检测系统设计[J].仪表技术与传感器, 2018(2):101-104,108.
ZHANG Qi, JIA Fangxiu, YIN Tingting. Design of real-time image edge detection system based on improved Sobel algorithm [J]. Instrument Technique and Sensor, 2018(2): 101-104,108.
[16] 唐钱龙,谭园,彭立敏,等.基于数字图像技术的隧道衬砌裂缝识别方法研究[J].铁道科学与工程学报,2019,16(12):3041-3049.
TANG Qianlong, TAN Yuan, PENG Limin, et al. On crack identifica-tion method for tunnel lining based on digital image technology [J]. Journal of Railway Science and Engineering, 2019, 16(12): 3041-3049. |