重庆交通大学学报(自然科学版) ›› 2022, Vol. 41 ›› Issue (07): 81-88.DOI: 10.3969/j.issn.1674-0696.2022.07.13
高晶晶1,樊兴华2
收稿日期:
2020-03-27
修回日期:
2020-12-30
发布日期:
2022-07-25
作者简介:
高晶晶(1985—),女,甘肃临洮人,副教授,硕士,主要从事桥梁设计理论及实践方面的研究。Email:63676228@qq.com
基金资助:
GAO Jingjing, FAN Xinghua
Received:
2020-03-27
Revised:
2020-12-30
Published:
2022-07-25
摘要: 针对两种碱活化粉煤灰(AAFA)和碱活化矿渣(AASL)多孔混凝土的耐硫酸盐浸蚀性进行研究,采用传统试验指标,包括质量损失、横截面尺寸、抗压强度分析,结合X射线衍射(XRD)和扫描电镜(SEM)等微观测试手段,研究不同多孔混凝土试件养护龄期、硫酸盐溶液浓度及浸蚀时间对碱激发胶凝材料多孔混凝土耐硫酸盐浸蚀性能的影响。结果表明:不同碱激发胶凝材料具有不同的劣化方式,普通多孔混凝土(OPC)主要体现在质量和横截面尺寸的衰减,AASL主要表现为质量的增加以及横截面尺寸的膨胀,且OPC和AASL浸蚀后的主要产物为石膏;AAFA没有明显的质量及横截面尺寸变化,其浸蚀过程为硅铝酸钠结晶的脱铝和碱化以及少量石膏的生成,伴随着抗压强度的降低。
中图分类号:
高晶晶1,樊兴华2. 碱激发胶凝多孔混凝土抗硫酸盐浸蚀性研究[J]. 重庆交通大学学报(自然科学版), 2022, 41(07): 81-88.
GAO Jingjing, FAN Xinghua. Sulphate Corrosion Resistance of Alkali-Activated Cementitious Porous Concrete[J]. Journal of Chongqing Jiaotong University(Natural Science), 2022, 41(07): 81-88.
[1] 谢晓庚, 张同生, 韦江雄, 等. 透水混凝土组成结构设计研究进展[J]. 混凝土, 2020(2): 165-169.
XIE Xiaogen,ZHANG Tongsheng,WEI Jiangxiong,et al. Critical review on the mixture proportion and skeleton structure design of pervious concrete [J]. Concrete, 2020(2): 165-169. [2] 吴克雄, 钱立兵, 覃吉云, 等. 海绵城市用透水混凝土的研制与工程应用[J]. 新型建筑材料, 2018,45(11): 119-122. WU Kexiong,QIAN Libing,QIN Jiyun,et al. The development and application of pervious concrete for sponge city [J]. New Building Materials, 2018,45(11): 119-122 [3] 黄美燕. 硫酸盐腐蚀对透水混凝土抗压强度及透水性能的影响[J]. 新型建筑材料, 2019,46(2): 40-44. HUANG Meiyan. Effect of sulfate corrosion on compressive strength and permeable properties of pervious concrete [J].New Building Materials, 2019,46(2): 40-44. [4] 张国强. 透水混凝土试验性能研究[D].广州: 广州大学, 2018. ZHANG Guoqiang.An Experimental Study on the Properties of the Permeable Concrete [D]. Guangzhou: Guangzhou University,2018. [5] NG D S, PAUL S C, ANGGRAINI V, et al. Influence of SiO2, TiO2 and Fe2O3 nanoparticles on the properties of fly ash blended cement mortars[J]. Construction and Building Materials, 2020,258:119627. [6] ZHANG Yaojun, HE Panyang, CHEN Hao, et al. Green transforming metallurgical residue into alkali-activated silicomanganese slag-based cementitious material as photocatalyst[J]. Materials, 2018,11(9): 11091773. [7] ZHANG Qilin, JI Tao, YANG Zhengxian, et al. Influence of different activators on microstructure and strength of alkali-activated nickel slag cementitious materials[J ]. Construction and Building Materials, 2020,235: 117449. [8] 叶家元, 张文生. 纳米改性碱激发胶凝材料的研究进展[J]. 硅酸盐学报, 2020,48(8): 1263-1277. YE Jiayuan,ZHANG Wensheng. Research progress on nano-modified alkali-activated cementitious materials [J]. Journal of the Chinese Ceramic Society, 2020,48(8): 1263-1277. [9] HAYES N W, GIORLA A B, TRENT W, et al. Effect of alkali-silica reaction on the fracture properties of confined concrete[J]. Construction and Building Materials, 2020,238: 117641. [10] 赵德霞. 碱激发粉煤灰/矿渣泡沫混凝土的制备与性能研究[D].广州: 广州大学, 2018. ZHAO Dexia.Preparation and Properties of Alkali-activated Fly Ash/Slag Foam Concrete [D]. Guangzhou: Guangzhou University,2018. [11] KAEWMEE P, SONG Mengzhu, IWANAMI M, et al. Porous and reusable potassium-activated geopolymer adsorbent with high compressive strength fabricated from coal fly ash wastes[J]. Journal of Cleaner Production, 2020,272: 122617. [12] 荆锐, 刘宇, 张慧杰, 等. 偏高岭土和粉煤灰对碱-矿渣复合胶凝材料的凝结时间及早期力学性能的影响[J]. 硅酸盐通报, 2020,39(10): 3237-3243. JING Rui,LIU Yu,ZHANG Huijie,et al. Influences of metakaolin and fly ash on setting time and early age mechanical properties of alkali-activated slag composite cementitious materials [J]. Bulletin of the Chinese Ceramic Society, 2020,39(10): 3237-3243. [13] 阚黎黎, 王文松, 王家豪, 等. 高延性偏高岭土-粉煤灰基地聚合物的制备及拉伸性能[J]. 建筑材料学报, 2019,22(5): 673-679,699 . KAN Lili, WANG Wensong, WANG Jiahao, et al. Preparation and tensile property of metakaolin-fly ash based engineered geopolymer composites[J]. Journal of Building Materials, 2019,22(5): 673-679,699. [14] NUAKLONG P, SATA V, WONGSA A, et al. Recycled aggregate high calcium fly ash geopolymer concrete with inclusion of OPC and nano-SiO2[J]. Construction and Building Materials, 2018,174: 244-252. [15] HEFNI Y, ZAHER Y A E, WAHAB M A. Influence of activation of fly ash on the mechanical properties of concrete[J]. Construction and Building Materials, 2018,172:728-734. [16] WU Yanguang, LU Bowen, BAI Tao,et al. Geopolymer, green alkali activated cementitious material: Synthesis, applications and challenges[J]. Construction and Building Materials, 2019,224: 930-949. [17] WANG Wei, NOGUCHI T. Alkali-silica reaction (ASR) in the alkali-activated cement (AAC) system: A state-of-the-art review[J]. Construction and Building Materials, 2020,252:119105. [18] 中国建筑材料科学研究院水泥科学与新型建筑材料研究所. 混凝土抗硫酸盐类浸蚀防腐剂:JC/T 1011—2006 [S].北京:中国建材工业出版社,2006. Institute of Cement Science and New Building Materials of China Building Material Academy. Sulfate Corrosion-Resistance Admixtures for Concrete:JC/T 1011—2006 [S ]. Beijing: China Building Materials Press,2006. [19] 纪茂杰, 纪人豪, 黄然. 碱激发硅钙基与硅铝基材料反应机理对混凝土性质与耐久性的研究[J]. 混凝土, 2019 (8): 1-7. JI Maojie,JI Renhao,HUANG Ran. Hydration mechanism of alkali-activated silicate-calcium-based and aluminosilicate-based binder on properties and durability of concrete[J].Concrete, 2019 (8): 1-7. [20] 余胜. 碱激发矿渣-粉煤灰胶凝体物理力学性能研究[D].武汉: 湖北工业大学, 2020. YU Sheng. Study on the Physical and Mechanical Properties of Alkali Activated Slag-Fly Ash Gel [D].Wuhan: Hubei University of Technology,2020. [21] YE Hailong, HUANG Le. Degradation mechanisms of alkali-activated binders in sulfuric acid: The role of calcium and aluminum availability[J]. Construction and Building Materials, 2020,246: 118477. [22] RASHAD A M, SADEK D M. Behavior of alkali-activated slag pastes blended with waste rubber powder under the effect of freeze/thaw cycles and severe sulfate attack[J]. Construction and Building Materials, 2020,265: 120716. [23] 刘翼玮, 张祖华, 史才军, 等. 硅灰对高强地聚物胶凝材料性能的影响[J]. 硅酸盐学报, 2020,48(11): 1689-1699. LIU Yiwei,ZHANG Zuhua,SHI Caijun,et al. Influence of silica fume on performance of high-strength geopolymer [J]. Journal of the Chinese Ceramic Society, 2020,48(11): 1689-1699. [24] 刘梦珠. 碱激发胶凝材料的制备及性能研究[D]. 北京: 北京建筑大学, 2020. LIU Mengzhu. Preparation and Properties of Alkali-activated Cementitious Materials [D]. Beijing: Beijing University of Civil Engineering and Architecture, 2020. [25] 黄丽萍, 马倩敏, 郭荣鑫, 等. 碱矿渣胶凝材料水化产物的试验研究[J]. 硅酸盐通报, 2020,39(4): 1194-1200. HUANG Liping,MA Qianmin,GUO Rongxin,et al. Experimental study on hydration products of alkali-activated slag [J]. Bulletin of the Chinese Ceramic Society, 2020,39(4): 1194-1200. [26] 麻鹏飞, 李爽, 程宝军, 等. 碱激发矿渣水泥基材料收缩性能研究[J]. 无机盐工业, 2020,52(10): 145-150. MA Pengfei,LI Shuang,CHENG Baojun,et al. Research on contractility of alkali activated slag mortar [J]. Inorganic Chemicals Industry,2020,52(10): 145- |
[1] | 孔令云, 张艺昕, 曾玉梅, 黄麟钬. 沥青断裂性能理论模型的建立与试验验证[J]. 重庆交通大学学报(自然科学版), 2023, 42(1): 45-53. |
[2] | 蔡凤杰, 冯振刚, 姚冬冬, 陈婷婷, 韦金城. 沥青蠕变恢复性能快速检测方法研究[J]. 重庆交通大学学报(自然科学版), 2023, 42(1): 54-59. |
[3] | 刘 克. 含弹性极限的Burgers模型研究[J]. 重庆交通大学学报(自然科学版), 2022, 41(09): 89-94. |
[4] | 陈龙, 陈宏斌, 何兆益, 李朋, 王晓东. 基于常规、疲劳与愈合-疲劳试验的沥青再生性能研判[J]. 重庆交通大学学报(自然科学版), 2022, 41(09): 108-116. |
[5] | 冯振刚, 焦晓来, 王书娟, 张健, 姚冬冬. 基于体积参数与路用性能的沥青混合料成型温度研究[J]. 重庆交通大学学报(自然科学版), 2022, 41(09): 123-129. |
[6] | 张争奇1,卢川1,王素青1,2,李乃强3,李宏伟3. 高模量沥青性能及其界定标准研究[J]. 重庆交通大学学报(自然科学版), 2021, 40(09): 109-116. |
[7] | 蔡斌1,余功新2,李彦伟1,薛善光1. 超高掺量胶粉改性沥青性能[J]. 重庆交通大学学报(自然科学版), 2021, 40(09): 117-123. |
[8] | 侯芸1,2,3,董元帅1,2,3,李志豪4,胡森4,曹雪娟5. 植物油再生SBS改性沥青混合料路用性能研究[J]. 重庆交通大学学报(自然科学版), 2021, 40(08): 120-125. |
[9] | 乔志1,陈谦2,王朝辉2,牛昌昌1,郭滕滕2. 新型电气石复合材料及其沥青烟吸附性研究[J]. 重庆交通大学学报(自然科学版), 2021, 40(08): 126-131. |
[10] | 赵伟. 纳米蒙脱石/SBS复掺改性沥青性能试验研究[J]. 重庆交通大学学报(自然科学版), 2021, 40(07): 118-122. |
[11] | 郭鹏1, 陈思贤1, 曹志国1, 刘俊1,孟建玮2,鲜江林3. 复配废机油再生剂的制备及性能研究[J]. 重庆交通大学学报(自然科学版), 2021, 40(06): 87-91. |
[12] | 肖庆一1,2,赵鹏1,孙博伟3,张怡4,丁啸5. 废植物油再生沥青结合料性能研究[J]. 重庆交通大学学报(自然科学版), 2021, 40(06): 92-98. |
[13] | 何丽红1,2,温仙仙1,2,侯艺桐1,2,邓稳1,2. 阴离子乳化沥青粒径大小及分布影响因素分析[J]. 重庆交通大学学报(自然科学版), 2021, 40(06): 99-104. |
[14] | 王志祥1,2,李建阁1,陈楚鹏2. 基于变权重评价的沥青路面使用性能灰色预测[J]. 重庆交通大学学报(自然科学版), 2021, 40(05): 95-101. |
[15] | 肖庆一1,2,3,封仕杰1,孙立东1,陈向伟1. 碱渣掺量对不同龄期下半刚性再生基层力学性能研究[J]. 重庆交通大学学报(自然科学版), 2021, 40(05): 102-109. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||