[1] 陈飞,张林艳,封基良,等.沥青混合料低温抗裂性能试验方法研究进展[J].材料导报,2021,35(增刊2):127-137.
CHEN Fei, ZHANG Linyan, FENG Jiliang, et al. Research progress on test methods of asphalt mixture’s low-temperature anti-cracking performance[J]. Materials Reports, 2021, 35(Sup 2): 127-137.
[2] 宋卫民,徐子浩,吴昊,等.一种沥青混凝土中低温断裂性能统一评价方法[J].中南大学学报(自然科学版),2021,52(7):2386-2393.
SONG Weimin, XU Zihao, WU Hao, et al. A unified evaluation method for intermediate and low temperature fracture performance of asphalt concrete[J]. Journal of Central South University (Science and Technology), 2021, 52(7): 2386-2393.
[3] LUO Rong, CHEN Hui. Improved method of characterizing fracture resistance of asphalt mixtures using modified Paris’ law: Development of methodology[J]. Journal of Materials in Civil Engineering, 2020, 32(10): 4020283.
[4] ZENG Guowei, ZHOU Peng. Research on fracture parameters of asphalt mixture based on XFEM and J integral method[J]. Journal of Physics: Conference Series, 2021, 2012:012098.
[5] 黄麟钬.基于能量平衡原理的低温受拉下基质沥青断裂性能评价模型[D]. 重庆:重庆交通大学,2019.
HUANG Linhuo. Evaluation Model for Fracture Performance of Matrix Asphalt under Low Temperature Tension Based on Energy Balance Principle [D]. Chongqing :Chongqing Jiaotong University, 2019.
[6] 交通运输部公路科学研究院.公路工程沥青及沥青混合料试验规程:JTG E20—2011 [S].北京:人民交通出版社,2011.
Research Institute of Highway Ministry of Transport.Standard Test Methods of Bitumen and Bituminous Mixtures for Highway Engineering:JTG E20—2011 [S].Beijing:China Communications Press,2011.
[7] KOLOSOV G V. On the Application of Complex Function Theory to Plane Problem of the Mathematical Theory of Elasticity[D]. Tactu: Dorpat University, 1909.
[8] ENGLAND A H. Complex Variable Methods in Elasticity[M]. Chicago:Courier Corporation, 2003.
[9] 路可见.平面弹性复变方法[M].武汉:武汉大学出版社,1986.
LU Kejian. Plane Elastic Complex Variable Method[M]. Wuhan: Wuhan University Press, 1986.
[10] 路可见,蔡海涛.平面弹性理论的周期问题[M].长沙:湖南科学技术出版社,1986.
LU Kejian, CAI Haitao. The Periodic Problem of Plane Elasticity Theory[M]. Changsha: Hunan Science and Technology Press, 1986.
[11] 段连发.裂纹尖端处应力强度因子的复变函数解与数值模拟计算[D]. 兰州:兰州交通大学,2018.
DUAN Lianfa. The Solution of Complex Variable Function and the Numerical Simulation of Stress Intensity Factor at Crack Tips[D]. Lanzhou: Lanzhou Jiaotong University, 2018.
[12] 程靳,赵树山.断裂力学[M].北京:科学出版社,2006.
CHENG Jin, ZHAO Shushan. Fracture Mechanics[M]. Beijing: Science Press, 2006.
[13] 董仕豪,韩森,尹媛媛,等.基于表面能理论的石灰改性沥青黏附性研究[J].重庆交通大学学报(自然科学版),2021,40(3):89-97.
DONG Shihao, HAN Sen, YIN Yuanyuan, et al. Adhesion of lime modified asphalt based on surface energy theory[J]. Journal of Chongqing Jiaotong University(Natural Science), 2021, 40(3): 89-97.
[14] 韩维权. 基于矿物学理论的集料-沥青粘附特性研究[D]. 哈尔滨:哈尔滨工业大学,2020.
HAN Weiquan. Research on Adhesion Between Aggregate and Asphalt Based on Mineralogical Theory[D]. Harbin:Harbin Institute of Technology, 2020.
[15] 王书敏,张丽华,代淑兰.固体表面能测定方法研究进展[J].应用化工,2020,49(12):3155-3161.
WANG Shumin, ZHANG Lihua, DAI Shulan. Research progress in the determination solid surface energy[J]. Applied Chemical Industry, 2020, 49(12): 3155-3161.
[16] 马祥英,黄在银,梁翠益,等.基于溶解度法的纳米镉、铅、银硫化物的热力学性质研究[J].济南大学学报(自然科学版),2020,34(2):169-175.
MA Xiangying, HUANG Zaiyin, LIANG Cuiyi, et al. Thermodynamic properties of CdS, PbS, and Ag2S nano-particles based on principle of dissolution method[J]. Journal of University of Jinan(Science and Technology), 2020, 34(2): 169-175.
[17] KUMIKOV V K, KHOKONOVK B. On the measurement of surface free energy and surface tension of solid metals[J]. Journal of Applied Physics, 1983, 54(3): 1346-1350.
[18] FUERSTENAU D W, DIAO J, HANSON J S. Estimation of the distribution of surface sites and contact angles on coal particles from film flotation data[J]. Energy & Fuels, 1990, 4(1): 34-37.
[19] 孔令云,邹胜楠,黄麟钬,等.复合式路面疲劳裂纹扩展数值模拟研究[J].重庆交通大学学报(自然科学版),2021,40(4):91-97,126.
KONG Lingyun, ZOU Shengnan, HUANG Linhuo, et al. Numerical simulation study on fatigue crack propagation of composite pavement[J]. Journal of Chongqing Jiaotong University(Natural Science), 2021, 40(4): 91-97,126.
[20] OWENS D K, WENDT R C. Estimation of the surface free energy of polymers[J]. Journal of Applied Polymer Science, 1969, 13(8): 1741-1747.
[21] FOWKESF M. Attractive forces at interfaces[J]. Industrial & Engineering Chemistry, 1964, 56(12): 40-52.
[22] YOUNG T. An essay on the cohesion of fluids[J]. Philosophical Transactions of the Royal Society of London, 1805 (95): 65-87. |