中文核心期刊
CSCD来源期刊
中国科技核心期刊
RCCSE中国核心学术期刊

重庆交通大学学报(自然科学版) ›› 2024, Vol. 43 ›› Issue (3): 84-91.DOI: 10.3969/j.issn.1674-0696.2024.03.10

• 交通+大数据人工智能 • 上一篇    

考虑交通状态影响的服务区凝聚层次聚类入区判别模型

章玉1,张婷婷2,姚成北2,曹鹏超2   

  1. (1. 中铁长江交通设计集团有限公司,重庆 401121; 2. 重庆交通大学 交通运输学院,重庆 400074)
  • 收稿日期:2023-05-04 修回日期:2023-10-08 发布日期:2024-03-21
  • 作者简介:章 玉(1985—),男,湖北宜昌人,正高级工程师,博士,主要从事智能交通与大数据分析方面的工作。E-mail:107615320@qq.com 通信作者:张婷婷(2001—),女,河南许昌人,硕士,主要从事智能交通与大数据分析方面的研究。E-mail:1504394628@qq.com
  • 基金资助:
    重庆市科技局面上项目(CSTB2022TIAD-GPX0024)

An Identification Model of Entering the Service Area of Agglomerative Hierarchical Clustering Considering the Influence of Traffic Status

ZHANG Yu1, ZHANG Tingting2, YAO Chengbei2, CAO Pengchao2   

  1. (1. China Railway Changjiang Traffic Design Group Co., Ltd., Chongqing 401121, China; 2. School of Traffic & Transportation, Chongqing Jiaotong University, Chongqing 400074, China)
  • Received:2023-05-04 Revised:2023-10-08 Published:2024-03-21

摘要: 为了精准掌握高速公路服务区入区车辆特征、提升服务区运营管理水平,基于高速公路ETC门架通行和收费数据,在分析服务区路段和邻近服务区路段车辆行程时间和速度分布特征基础上,考虑路段交通运行状态影响,提出了基于凝聚层次聚类的运行状态识别方法和服务区分车型入区判别模型。以G65包茂高速大观服务区为例,通过关联上、下游门架路段交通运行状态,明确了服务区路段车辆在4种不同运行状态下的速度概率分布特性,结合聚类给出了各个运行状态下车流密度和速度变化的入区判定条件,并利用服务区视频卡口数据进行验证分析。结果表明:判别误差主要分布在拥堵时段,全日客车和货车在考虑运行状态下的相对误差分别为1.5%、7.0%,与不考虑路段运行状态情况相比分别提高了2.9%、4.1%,验证了模型的有效性,为获取高速公路服务区入区车辆特征提供了一种新的思路。

关键词: 交通工程;高速公路服务区;入区车辆判别;凝聚层次聚类;ETC数据

Abstract: To accurately grasp the characteristics of vehicles entering the expressway service area and improve the operation management level of the service area, the vehicle travel time and speed distribution characteristics of the sections in the service area and adjacent service area were analyzed based on the highway ETC gantry traffic and toll data. Considering the influence of traffic operation state in section, a method for identifying the operation state based on the agglomeration hierarchical clustering and an identification model for judging vehicles entering service area were proposed. Taking the Daguan service area on the G65 Bao-Mao highway as an example, firstly, the speed probability distribution characteristics of vehicles in the service area section under four different operation states were clarified by correlating the traffic states of the upstream and downstream gantry sections. Then, the judging criteria of entering the service area based on the change of traffic density and speed in various operating states were given by clustering algorithm. Finally, the verification and analysis were carried out by using the video bayonet data in the service area. The results show that the identification errors are mainly distributed in the congestion period, and the relative errors of all-day passenger cars and trucks with considering the operation states are 1.5% and 7% respectively, which are 2.9% and 4.1% higher than those without considering the operation states. The effectiveness of the proposed model is verified, which provides a new way to obtain the characteristics of vehicles entering the expressway service area.

Key words: traffic engineering; expressway service area; identification of vehicles entering service area; agglomerative hierarchical clustering; ETC data

中图分类号: