中文核心期刊
CSCD来源期刊
中国科技核心期刊
RCCSE中国核心学术期刊

重庆交通大学学报(自然科学版) ›› 2024, Vol. 43 ›› Issue (11): 84-94.DOI: 10.3969/j.issn.1674-0696.2024.11.11

• 交通+大数据人工智能 • 上一篇    

基于消费行为预测的前摄性电动车辆路径问题

葛显龙1,姜云云1,尹秋霜1,杨育树2   

  1. (1. 重庆交通大学 经济与管理学院,重庆 400074; 2. 重庆交通大学 交通运输学院,重庆 400074)
  • 收稿日期:2023-11-08 修回日期:2024-06-15 发布日期:2024-11-27
  • 作者简介:葛显龙(1984—),男,河南信阳人,教授,博士,主要从事智能物流网络优化方面的研究。E-mail:gexianlong@cqjtu.edu.cn
  • 基金资助:
    国家社会科学基金项目资助(19CGL041);重庆市自然科学基金面上项目(cstc2020jcyj-msxmX0108);“成渝地区双城经济圈建设”科技创新重点项目(KJCXZD2020031)

Proactive Electric Vehicle Routing Problem Based on Consumer Behavior Prediction

GE Xianlong1, JIANG Yunyun1, YIN Qiushuang1, YANG Yushu2   

  1. (1. School of Economics and Management, Chongqing Jiaotong University, Chongqing 400074, China; 2. College of Traffic & Transportation, Chongqing Jiaotong University, Chongqing 400074, China)
  • Received:2023-11-08 Revised:2024-06-15 Published:2024-11-27

摘要: 针对海量、分散、随机到达的电商物流订单需求,提出基于需求预测的前摄性物流服务模式。结合商品属性、用户行为及其交互特征等消费行为轨迹数据预测客户潜在购买意愿,将预测订单需求前置到客户就近仓库,建立“中心仓-仓配中心-客户”两级电动汽车网络优化模型。鉴于问题的复杂性,设计两阶段混合启发式智能优化算法,第1阶段采用二边逐次修正方法获取初始解,第2阶段设计混合模拟遗传算法对初始解迭代寻优。研究结果表明:前摄性配送的一级网络运输总距离、总成本分别节约106%和101%,而二级网络总成本增加仅为9%。

关键词: 交通运输工程;需求预测;前摄性配送;混合模拟遗传算法;两级路网;电动汽车

Abstract: Under the requirement of massive, dispersed, and randomly arrived e-commerce logistics orders, a proactive logistics service mode based on demand prediction was proposed. The product attributes, user behaviors, customer interaction characteristics and other behavior trajectory data were combined to predict the potential purchasing intentions of customers, and the predicted order demands was advanced to customers’ nearest warehouse. Therefore, a two-echelon electric vehicle network optimization model of “central depot to forward center to customer” was established. Given the complexity of the problem, a two-stage hybrid heuristic intelligent optimization algorithm was designed. In the first stage, a two-edge successive correction method was used to obtain the initial solution, and in the second stage, a hybrid simulated genetic algorithm was designed to iteratively optimize the initial solution. The experimental results show that the total transportation distance and total cost of the first level network for proactive delivery are reduced by 106% and 101%, respectively, while the total cost of the second level network is increased by only 9%.

Key words: traffic and transportation engineering; demand forecasting; proactive delivery; hybrid simulation genetic algorithm; two-echelon road network; electric vehicle

中图分类号: