
重庆交通大学学报(自然科学版) ›› 2024, Vol. 43 ›› Issue (12): 27-40.DOI: 10.3969/j.issn.1674-0696.2024.12.04
• 交通基础设施工程 • 上一篇
王浩宇1,李鹏飞 1,聂鼎 2
收稿日期:2024-02-28
修回日期:2024-04-06
发布日期:2024-12-24
作者简介:王浩宇(1997—),男,重庆人,博士研究生,主要从事水工结构及材料方面的研究。E-mail: wanghaoyu0422@mails.cqjtu.edu.cn
通信作者:李鹏飞(1986—),男,河南周口人,教授,博士,主要从事水工结构及材料方面的研究。E-mail: lipengfei@cqjtu.edu.cn
基金资助:WANG Haoyu1, LI Pengfei1, NIE Ding2
Received:2024-02-28
Revised:2024-04-06
Published:2024-12-24
摘要: 水工隧洞承载着引水、输水、排水等重要功能,是国家水网建设中的重要组成部分。随着西部地区大洞径、深埋深的水工隧洞结构的出现,众多学者针对衬砌混凝土裂缝形成机理进行了研究。首先,基于文献阅读与整理,从水工衬砌混凝土缺陷类型出发,发现衬砌裂缝为病害的重要原因之一,其成为了制约输引水效率的关键因素;其次,根据衬砌裂缝产生的原因及其导致的严重工程后果,对围岩预测、温控措施、混凝土材料性能提升及智能温控养护技术等防裂技术进行了讨论;然后,从多尺度耦合分析模型出发,对钢筋混凝土衬砌的劣化原因进行了总结;最后,基于衬砌混凝土在实际工程中所受的真实荷载及环境条件,展望使用多尺度耦合分析模型,为揭示衬砌混凝土开裂机理提供一种新的方法。
中图分类号:
王浩宇1,李鹏飞 1,聂鼎 2. 水工隧洞衬砌混凝土多尺度开裂机理及防裂技术研究进展[J]. 重庆交通大学学报(自然科学版), 2024, 43(12): 27-40.
WANG Haoyu1, LI Pengfei1, NIE Ding2. Advance of Research on Multi-scale Cracking Mechanism and Anti-cracking Technology of Hydraulic Tunnel Lining Concrete[J]. Journal of Chongqing Jiaotong University(Natural Science), 2024, 43(12): 27-40.
| [1] MOON J, JEONG S. Effect of highly pervious geological features on ground-water flow into a tunnel [J]. Engineering Geology, 2011, 117(3/4): 207-216.
[2]CAO Ruilang, WANG Yujie, ZHENG Lifeng, et al. Influencing factors of lining crack width in hydraulic tunnels under high internal water pressure[J]. IOP Conference Series: Earth and Environmental Science, 2020, 570(5): 052037. [3] YUAN Jian, ZHANG Zhaorui, FU Qiang, et al. Ion corrosion behavior of tunnel lining concrete in complex underground salt environment[J]. Journal of Materials Research and Technology, 2023, 24: 4875-4887. [4]刘德柱, 李元海. 软弱缓倾层状隧道围岩变形破裂规律试验研究[J]. 地下空间与工程学报, 2023, 19(5): 1527-1535. LIU Dezhu, LI Yuanhai. Experimental investigation on the law of deformation and fracture of surrounding rock of soft and gently inclined layered tunnel[J]. Chinese Journal of Underground Space and Engineering, 2023, 19(5): 1527-1535. [5] YE Fei, QIN Nan, LIANG Xing, et al. Analyses of the defects in highway tunnels in China[J]. Tunnelling and Underground Space Technology, 2021, 107: 103658. [6] ZHANG Wei, DAI Beibing, LIU Zhen, et al. Numerical algorithm of reinforced concrete lining cracking process for pressure tunnels[J]. Engineering Computations, 2018, 35(1): 91-107. [7] XU Guowen, HE Chuan, LU Daiyue, et al. The influence of longitudinal crack on mechanical behavior of shield tunnel lining in soft-hard composite strata[J]. Thin-Walled Structures, 2019, 144: 106282. [8] 苏凯, 王博士, 王文超, 等. 水-温作用下水工隧洞钢筋混凝土衬砌开裂特性[J]. 华中科技大学学报(自然科学版), 2020, 48(12): 114-120. SU Kai, WANG Boshi, WANG Wenchao, et al. Study on cracks of reinforced concrete lining of hydraulic tunnel under the combined action of water pressure and temperature load[J]. Journal of Huazhong University of Science and Technology (Natural Science Edition), 2020, 48(12): 114-120. [9] ZHOU Yafeng, SU Kai, WU Hegao. Hydro-mechanical interaction analysis of high pressure hydraulic tunnel[J]. Tunnelling and Underground Space Technology, 2015, 47: 28-34. [10] SIMANJUNTAK T, MARENCE M, MYNETT A E, et al. Mechanical-hydraulic interaction in the cracking process of pressure tunnels linings [J]. International Journal on Hydropower & Dams, 2013, 20(5): 112-119. [11]卞康,肖明.水工隧洞衬砌水压致裂过程的渗流-损伤-应力耦合分析[J].岩石力学与工程学报,2010,29(增刊2):3769-3776. BIAN Kang, XIAO Min. Seepage-damage-stress coupling analysis of hydraulic tunnel lining in hydraulic fracturing process [J]. Chinese Journal of Rock Mechanics and Engineering, 2010, 29(Sup 2): 3769-3776. [12] 贺家新,贺少辉,刘夏冰,等.脆岩超大断面隧道双层初支支护时机研究[J].岩石力学与工程学报,2023,42(12):3010-3019. HE Jiaxin, HE Shaohui, LIU Xiabing, et al. Study on supporting time of double-layer primary support for super-large section tunnel in brittle rock [J]. Chinese Journal of Rock Mechanics and Engineering,2023,42(12):3010-3019. [13] 徐洁. 深埋引水隧洞围岩蠕变参数反演及支护时机研究[D]. 合肥: 合肥工业大学, 2022. XU Jie. Inversion of Creep Parameters of Surrounding Rock of Deep-Buried Diversion Tunnel and Study on Supporting Opportunity [D].Hefei: Hefei University of Technology, 2022. [14] WANG Yaqiong, LIU Yong, WANG Zhifeng, et al. Investigation on progressive failure process of tunnel lining induced by creep effect of surrounding rock: A case study[J]. Engineering Failure Analysis, 2023, 144: 106946. [15] ZHAO Dongping, HE Qi, JI Qihang, et al. Similar model test of a mudstone-interbedded-sandstone-bedding rock tunnel[J]. Tunnelling and Underground Space Technology, 2023, 140: 105299. [16] ZHANG Wei, LIU Ming, BIAN Kang, et al. Modelling the hydro-mechanical behavior of high-pressure tunnel with emphasis on the interaction between lining and rock mass[J]. Computers and Geotechnics, 2021, 139: 104382. [17] HUANG W M, WANG J C, YANG Z X, et al. Analytical method for structural analysis of segmental lining interaction with nonlinear surrounding soil and its application in physical test interpretation[J]. Tunnelling and Underground Space Technology Incorporating Trenchless Technology Research, 2022, 127: 104601. [18] 蒋雅君,何斌,赵菊梅,等.基于地层结构法的喷膜防水衬砌结构力学性能分析[J].公路,2022,67(6):369-377. JIANG Yajun, HE Bin, ZHAO Jumei, et al. Mechanical properties analysis of spray-applied waterproofing lining structure based on formation structure method [J]. Highway, 2022, 67(6): 369-377. [19] 赵晓红, 王海军, 张军, 等. 某引水隧洞工程衬砌结构分析[J]. 水电能源科学, 2016, 34(7): 104-107. ZHAO Xiaohong, WANG Haijun, ZHANG Jun, et al. Structural analysis of lining of diversion tunnel[J]. Water Resources and Power, 2016, 34(7): 104-107. [20] 林鹏, 李庆斌, 周绍武, 等. 大体积混凝土通水冷却智能温度控制方法与系统[J]. 水利学报, 2013, 44(8): 950-957. LIN Peng, LI Qingbin, ZHOU Shaowu, et al. Intelligent cooling control method and system for mass concrete[J]. Journal of Hydraulic Engineering, 2013, 44(8): 950-957. [21] 林鹏, 胡杭, 郑东, 等. 大体积混凝土真实温度场演化规律试验[J]. 清华大学学报(自然科学版), 2015, 55(1): 27-32. LIN Peng, HU Hang, ZHENG Dong, et al. Field tests on the evolution of a real thermal field in concrete[J]. Journal of Tsinghua University (Science and Technology), 2015, 55(1): 27-32. [22] 左正,胡昱,李庆斌,等.大体积混凝土温度应力耦合直观化仿真计算系统[J].计算力学学报,2013,30(增刊1):1-6. ZUO Zheng, HU Yu, LI Qingbin, et al. User-friendly thermal-stress coupled simulating platform of mass concrete [J]. Chinese Journal of Computational Mechanics, 2013, 30(Sup 1): 1-6. [23] 樊启祥, 段亚辉, 王孝海, 等. 水工隧洞衬砌混凝土通水冷却控温最佳时机[J]. 地下空间与工程学报, 2023, 19(4): 1320-1328. FAN Qixiang, DUAN Yahui, WANG Xiaohai, et al. Research on time control for water cooling lining concrete of hydraulic tunnel[J]. Chinese Journal of Underground Space and Engineering, 2023, 19(4): 1320-1328. [24] 方朝阳, 段亚辉. 利用嵌固板理论计算隧洞衬砌施工期温度应力[J]. 中国农村水利水电, 2003(11): 59-61. FANG Chaoyang, DUAN Yahui. Application of fixed slab theory in calculation of thermal stress of tunnel lining during construction period[J]. China Rural Water and Hydropower, 2003(11): 59-61. [25] 郭晓娜, 段亚辉, 陈同法. 输水隧洞衬砌混凝土施工期温度观测与应力分析[J]. 中国农村水利水电, 2004(7): 53-55. GUO Xiaona, DUAN Yahui, CHEN Tongfa. Temperature observation and stress analysis of concrete lining during construction period for water-conveying tunnel[J]. China Rural Water and Hydropower, 2004(7): 53-55. [26] 段亚辉, 樊启祥, 苏立, 等. 泄洪洞边墙衬砌混凝土浇筑温控防裂实时控制抗裂安全系数估算[J]. 武汉大学学报(工学版), 2023, 56(4): 387-395. DUAN Yahui, FAN Qixiang, SU Li, et al. Estimation of real time safety factor of crack resistance of tunnel side wall lining concrete of spillway tunnel[J]. Engineering Journal of Wuhan University, 2023, 56(4): 387-395. [27] 段亚辉,王孝海,段兴平,等.结构设计因素对泄洪洞衬砌混凝土施工期温度裂缝的影响[J].水电能源科学,2021,39(8):138-141. DUAN Yahui, WANG Xiaohai, DUAN Xingping, et al. Influence of structural factors on temperature control and crack prevention of lining concrete of spillway tunnel [J]. Water Resources and Power, 2021, 39(8): 138-141. [28] 孙光礼, 段亚辉. 边墙高度与分缝长度对泄洪洞衬砌混凝土温度应力的影响[J]. 水电能源科学, 2013, 31(3): 94-98. SUN Guangli, DUAN Yahui. Influence of sidewall height and parting length on thermal stress of spillway tunnel lining concrete[J]. Water Resources and Power, 2013, 31(3): 94-98. [29] 雷璇, 段亚辉, 李超. 不同结构形式水工隧洞温控特性分析[J]. 中国农村水利水电, 2017(12): 180-184. LEI Xuan, DUAN Yahui, LI Chao. An analysis of the temperature control characteristics of hydraulic tunnel lining concrete with different structures[J]. China Rural Water and Hydropower, 2017(12): 180-184. [30] 刘琨, 段亚辉. 垫层材料对泄洪洞衬砌混凝土施工期温度和温度应力影响研究[J]. 中国农村水利水电, 2013(12): 130-134. LIU Kun, DUAN Yahui. The influence of cushion material on temperature and thermal stress of lining concrete of flood discharge tunnel during the construction period[J]. China Rural Water and Hydropower, 2013(12): 130-134. [31] 段寅, 胡中平, 罗立哲. 大型地下洞室衬砌混凝土温控防裂研究[J]. 水利与建筑工程学报, 2015, 13(4): 107-110. DUAN Yin, HU Zhongping, LUO Lizhe. Study on temperature control and crack prevention for lining structure of underground engineering[J]. Journal of Water Resources and Architectural Engineering, 2015, 13(4): 107-110. [32] 段亚辉, 樊启祥, 王孝海, 等. 泄洪洞边墙衬砌混凝土施工期内部最高温度估算[J]. 三峡大学学报(自然科学版), 2021, 43(5): 56-62. DUAN Yahui, FAN Qixiang, WANG Xiaohai, et al. Estimation of internal maximum temperature of lining concrete for spillway tunnel side wall during construction[J]. Journal of China Three Gorges University (Natural Sciences), 2021, 43(5): 56-62. [33] YAO Qiang, QI Shunchao, WU Faming, et al. Abrasion-resistant and temperature control of lining concrete for large-sized spillway tunnels[J]. Applied Sciences, 2020, 10(21): 7614. [34] FANG Houguo, LIU Pinghui, ZHANG Tao. Experimental investigation on the polypropylene fiber concrete performance of Yellow River canal lining in the middle line of south-to-north water transfer project[J]. Applied Mechanics and Materials, 2011, 52-54: 1987-1991. [35] 郑道宽, 段亚辉. 围岩特性对泄洪洞无压段衬砌混凝土温度和温度应力的影响[J]. 中国农村水利水电, 2014(10): 116-119. ZHENG Daokuan, DUAN Yahui. The influence of elastic modulus of surrounding rock on temperature and thermal stress of lining concrete of pressureless section of spillway tunnels[J]. China Rural Water and Hydropower, 2014(10): 116-119. [36] 王海锋. 基于约束条件的隧道衬砌混凝土温度裂缝研究[D]. 西安: 长安大学, 2022. WANG Haifeng. Study on Temperature Cracks of Tunnel Lining Concrete Based on Constraints[D].Xian: Changan University, 2022. [37] 尹崇林, 吕爱钟. 水工圆形隧洞围岩衬砌摩擦滑动接触的新解法[J]. 力学学报, 2020, 52(1): 247-257. YIN Chonglin, LYU Aizhong. A new solution for frictional slip contact between surrounding rock and lining in a hydraulic circular tunnel[J]. Chinese Journal of Theoretical and Applied Mechanics, 2020, 52(1): 247-257. [38] MA Jianqin, XUE Chen, WANG Le, et al. Influence of constraint conditions on the seasonal variation of the concrete temperature cracks in a tunnel final lining[J]. IOP Conference Series: Earth and Environmental Science, 2021, 626(1): 012016. [39] 陈勤, 段亚辉. 洞室和围岩温度对泄洪洞衬砌混凝土温度和温度应力影响研究[J]. 岩土力学, 2010, 31(3): 986-992. CHEN Qin, DUAN Yahui. Influence of temperature in tunnel and surrounding rock on temperature and thermal stress of lining concrete of flood discharge tunnel[J]. Rock and Soil Mechanics, 2010, 31(3): 986-992. [40] HAO Shaoju, FEI Ruizhen. Optimisation study on crack resistance of tunnel lining concrete under high ground temperature environment[J]. Geotechnical and Geological Engineering, 2022, 40(8): 3985-4006. [41] 余俊,李东凯,和振,等.任意埋深下排水系统非对称堵塞隧道渗流场的解析研究[J].铁道科学与工程学报,2023,20(12):4678-4689. YU Jun, LI Dongkai, HE Zhen, et al. Analytical study of the seepage field in asymmetrically blocked tunnels with drainage systems at arbitrary burial depths[J]. Journal of Railway Science and Engineering, 2023,20(12):4678-4689. [42] DING Hao, JIANG Xinghong, LI Ke. Scale model study on water seepage from cracked lining structure[J]. IOP Conference Series: Materials Science and Engineering, 2020, 741(1): 012080. [43] FANG Yu, YAO Zhishu, HUANG Xianwen, et al. Permeability evolution characteristics and microanalysis of reactive powder concrete of drilling shaft lining under stress-seepage coupling[J]. Construction and Building Materials, 2022, 331: 127336. [44] BIAN Kang, XIAO Ming, CHEN Juntao. Study on coupled seepage and stress fields in the concrete lining of the underground pipe with high water pressure[J]. Tunnelling and Underground Space Technology, 2009, 24(3): 287-295. [45] CHEN Ziquan, LI Zheng, HE Chuan, et al. Investigation on seepage field distribution and structural safety performance of small interval tunnel in water-rich region[J]. Tunnelling and Underground Space Technology, 2023, 138: 105172. [46] GONG Chenjie, WANG Yuanye, PENG Yicheng, et al. Three-dimensional coupled hydromechanical analysis of localized joint leakage in segmental tunnel linings[J]. Tunnelling and Underground Space Technology, 2022, 130: 104726. [47] XIAO Ming, YUAN Qingteng, ZHAO Binxin, et al. Flow-solid coupling analysis of underground reinforced concrete forked pipe enclosing rock and structure[J]. Scientific Reports, 2023, 13: 16967. [48] 吕康成, 吉哲, 马超超, 等. 寒冷地区隧道温度、渗流规律与冻害预防[J]. 现代隧道技术, 2012, 49(1): 33-38. Lü Kangcheng, JI Zhe, MA Chaochao, et al. Temperature and seepage variation law and frost damage prevention for tunnels in cold regions[J]. Modern Tunnelling Technology, 2012, 49(1): 33-38. [49] YANG Kun, HU Jun, WANG Tao. Heat-flow coupling law for freezing a pipe reinforcement with varying curvatures[J]. Applied Sciences, 2023, 13(19): 10932. [50] LONG Wei, RONG Chuanxin, SHI Hao, et al. Temporal and spatial evolution law of the freezing temperature field of water-rich sandy soil under groundwater seepage: A case study[J]. Processes, 2022, 10(11): 2307. [51] 赖远明,吴紫汪,朱元林,等.寒区隧道温度场、渗流场和应力场耦合问题的非线性分析[J].岩土工程学报,1999(5):529-533. LAI Yuarming, WU Ziwang, ZHU Yuanlin, et al. Nonlinear analyses for the couple problem of temperature, seepage and stress fields in cold region tunnels [J]. Chinese Journal of Geotechnical Engineering, 1999(5):529-533. [52] 刘亚晨, 蔡永庆, 刘泉声, 等. 岩体裂隙结构面的温度-应力-水力耦合本构关系[J]. 岩土工程学报, 2001, 23(2): 196-200. LIU Yachen, CAI Yongqing, LIU Quansheng, et al. Thermal-hydraulic-mechanical coupling constitutive relation of rock mass fracture interconnectivity[J]. Chinese Journal of Geotechnical Engineering, 2001, 23(2): 196-200. [53] WU Di, ZHANG Yongliang, ZHAO Runkang, et al. A coupled thermal-hydraulic-mechanical application for subway tunnel[J]. Computers and Geotechnics, 2017, 84: 174-182. [54] GUO Tiankui, TANG Songjun, LIU Shun, et al. Numerical simulation of hydraulic fracturing of hot dry rock under thermal stress[J]. Engineering Fracture Mechanics, 2020, 240: 107350. [55] 丁秀丽,张雨霆,黄书岭,等.隧洞围岩大变形机制、挤压大变形预测及应用[J].岩石力学与工程学报,2023,42(3):521-544. DING Xiuli, ZHANG Yuting, HUANG Shuling, et al. Large deformation mechanism of surrounding rock masses of tunnels, prediction method of squeezing large deformation and its application [J]. Chinese Journal of Rock Mechanics and Engineering, 2023, 42(3): 521-544. [56] 张沛远,张晓平,张晗,等.莲花隧道软弱围岩大变形预测方法适用性评价研究[J].工程地质学报,2022,30(5):1689-1702. ZHANG Peiyuan, ZHANG Xiaoping, ZHANG Han, et al. Applicability evaluation of prediction method for large deformation of soft surrounding rock in Lianhua Tunnel [J]. Journal of Engineering Geology, 2022, 30(5): 1689-1702. [57] AZIZI F, KOOPIALIPOOR M, KHOSHROU H. Estimation of rock mass squeezing potential in tunnel route (Case study: Kerman Water Conveyance Tunnel)[J]. Geotechnical and Geological Engineering, 2019, 37(3): 1671-1685. [58] AJALLOEIAN R, MOGHADDAM B, AZIMIAN A. Prediction of rock mass squeezing of T4 tunnel in Iran[J]. Geotechnical and Geological Engineering, 2017, 35(2): 747-763. [59] 王述红, 董福瑞. 基于变形预测和参数反演的山岭隧道围岩稳定性分析[J]. 岩土工程学报, 2023, 45(5): 1024-1035. WANG Shuhong, DONG Furui. Stability analysis of surrounding rock of mountain tunnels based on deformation prediction and parameter inversion[J]. Chinese Journal of Geotechnical Engineering, 2023, 45(5): 1024-1035. [60] 郭新新, 汪波, 王振宇, 等. 考虑蠕变特性的高应力软岩隧道变形预测方法与实践[J]. 岩土工程学报, 2023, 45(3): 652-660. GUO Xinxin, WANG Bo, WANG Zhenyu, et al. Methods and practices for deformation prediction in high-stress soft rock tunnels considering creep characteristics[J]. Chinese Journal of Geotechnical Engineering, 2023, 45(3): 652-660. [61] SHI Shaoshuai, ZHAO Ruijie, LI Shucai, et al. Intelligent prediction of surrounding rock deformation of shallow buried highway tunnel and its engineering application[J]. Tunnelling and Underground Space Technology, 2019, 90: 1-11. [62] OCAK I, SEKER S E. Calculation of surface settlements caused by EPBM tunneling using artificial neural network, SVM, and Gaussian processes[J]. Environmental Earth Sciences, 2013, 70(3): 1263-1276. [63] 王海彦, 仇文革, 满帅, 等. 基于复合胶凝材配制隧道衬砌高性能混凝土试验研究[J]. 工业建筑, 2013, 43(9): 111-115. WANG Haiyan, QIU Wenge, MAN Shuai, et al. Experimental research on high-performance concrete tunnel lining based on composite cementitious material[J]. Industrial Construction, 2013, 43(9): 111-115. [64] ZBAY E, ERDEMIR M, DURMU?瘙塁 H I·. Utilization and efficiency of ground granulated blast furnace slag on concrete properties: A review [J]. Construction and Building Materials, 2016, 105: 423-434. [65] PAN Jin, FENG Kun, CHEN Wen, et al. Carrot extract as bio-admixture for performance enhancement of tunnel lining concrete[J]. Journal of Building Engineering, 2023, 75: 107036. [66] 同月苹, 王艳, 张少辉. 隧道衬砌纤维混凝土力学性能与耐久性能的研究进展[J]. 材料科学与工程学报, 2022, 40(3): 528-536. TONG Yueping, WANG Yan, ZHANG Shaohui. Research progress on mechanical properties and durability properties of tunnel lining fiber reinforced concrete[J]. Journal of Materials Science and Engineering, 2022, 40(3): 528-536. [67] BEHFARNIA K, BEHRAVAN A. Application of high performance polypropylene fibers in concrete lining of water tunnels[J]. Materials & Design, 2014, 55: 274-279. [68] YANG Long, YAO Zhishu, XUE Weipei, et al. Preparation, performance test and microanalysis of hybrid fibers and microexpansive high-performance shaft lining concrete[J]. Construction and Building Materials, 2019, 223: 431-440. [69] 李庆斌, 林鹏. 论智能大坝[J]. 水力发电学报, 2014, 33(1): 139-146. LI Qingbin, LIN Peng. Demonstration on intelligent dam[J]. Journal of Hydroelectric Engineering, 2014, 33(1): 139-146. [70] 樊启祥, 周绍武, 林鹏, 等. 大型水利水电工程施工智能控制成套技术及应用[J]. 水利学报, 2016, 47(7): 916-923. FAN Qixiang, ZHOU Shaowu, LIN Peng, et al. Construction intelligent control packaged technology and its application for a large hydropower project[J]. Journal of Hydraulic Engineering, 2016, 47(7): 916-923. [71] CHAUBE R,KISHI T; MAEKAWA K. Modelling of Concrete Performance: Hydration, Microstructure and Mass Transport[M]. London, UK: CRC Press,1999. [72] MAEKAWA K, ISHIDA T, KISHI T. Multi-scale modeling of concrete performance integrated material and structural mechanics[J]. Journal of Advanced Concrete Technology, 2003, 1(2): 91-126. [73] MAEKAWA K, ISHIDA T, KISHI T. Multi-scale Modeling of Structural Concrete [M]. Boca Raton, Florida, USA: CRC Press, 2009. [74] MAEKAWA K, FUJIYAMA C. Rate-dependent model of structural concrete incorporating kinematics of ambient water subjected to high-cycle loads[J]. Engineering Computations, 2013, 30(6): 825-841. [75] MAEKAWA K, OKAMURA H, PIMANMAS A. Non-linear Mechanics of Reinforced Concrete[M]. Florida, USA: CRC Press, 2003. [76] MAEKAWA K, ZHU Xiaoxu, CHIJIWA N, et al. Mechanism of long-term excessive deformation and delayed shear failure of underground RC box culverts[J]. Journal of Advanced Concrete Technology, 2016, 14(5): 183-204. [77] HAN Sunjin, ISHIDA T, TSUCHIYA S. Numerical evaluation on the effect of rebar corrosion on long-term structural behavior of underground RC culverts [J]. Structures, 2023, 48: 1920-1931. [78] WANG Zhao, MAEKAWA K. Lifetime assessment of structural concrete-multi-scale integrated hygro-thermal-chemo-electrical-mechanistic approach and statistical evaluation[J]. Structure and Infrastructure Engineering, 2022, 18(7): 933-949. [79] LI Pengfei, WANG Haoyu, NIE Ding, et al. A method to analyze the long-term durability performance of underground reinforced concrete culvert structures under coupled mechanical and environmental loads[J]. Journal of Intelligent Construction, 2023, 1(2): 9180011. |
| [1] | 董玉文1,彭亮2,谢辉1. 橡胶粉对混凝土抗冻耐久性的影响[J]. 重庆交通大学学报(自然科学版), 2021, 40(07): 112-117. |
| [2] | 董玉文1,余鑫2,秦瑶1,王宗波1. 冻融与锈蚀作用对钢筋混凝土黏结性能的影响[J]. 重庆交通大学学报(自然科学版), 2021, 40(05): 81-86. |
| [3] | 郑丹,谭帅帅. 基于红外图像增强算法的混凝土内部缺陷检测研究[J]. 重庆交通大学学报(自然科学版), 2021, 40(11): 114-117. |
| 阅读次数 | ||||||
|
全文 |
|
|||||
|
摘要 |
|
|||||