[1] AWAD E, DSOUZA S, KIM R, et al. The moral machine experiment[J]. Nature, 2018, 563(7729): 59-64.
[2] FAULHABER A K, DITTMER A, BLIND F, et al. Human decisions in moral dilemmas are largely described by utilitarianism: virtual car driving study provides guidelines for autonomous driving vehicles[J].Science and Engineering Ethics, 2019, 25(2): 399-418.
[3] BARMAN B, KANJILAL R, MUKHOPADHYAY A. Neuro-fuzzy controller design to navigate unmanned vehicle with construction oftraffic rules to avoid obstacles[J]. International Journal of Uncertainty, Fuzziness and Knowledge-Based Systems, 2016, 24(3): 433-449.
[4] 古天龙, 李龙. 伦理智能体及其设计: 现状和展望[J]. 计算机学报, 2021, 44(3): 632-651.
GU Tianlong, LI Long. Artificial moral agents and their design methodology: Retrospect and prospect[J]. Chinese Journal of Computers, 2021, 44(3): 632-651.
[5] KUMFER W, BURGESS R. Investigation into the role of rational ethics in crashes of automated vehicles[J].Transportation Research Record: Journal of the Transportation Research Board, 2015, 2489(1): 130-136.
[6] CONTISSA G, LAGIOIA F, SARTOR G. The ethical knob: Ethically customizable automated vehicles and the law[J].Artificial Intelligence and Law, 2017, 25(3): 365-378.
[7] EVANS K, DE MOURA N, CHAUVIER S, et al. Ethical decision making in autonomous vehicles: The AV ethics project[J].Science and Engineering Ethics, 2020, 26(6): 3285-3312.
[8] GU Jiuxiang, WANG Zhenhua, KUEN J, et al. Recent advances in convolutional neural networks[J].Pattern Recognition, 2018, 77: 354-377.
[9] KRIZHEVSKY A, SUTSKEVER I, HINTON G E. ImageNet classification with deep convolutional neural networks[J].Communications of the ACM, 2017, 60(6): 84-90.
[10] CHENG Yu, WANG Duo, ZHOU Pan, et al. Model compression and acceleration for deep neural networks: The principles, progress, and challenges[J].IEEE Signal Processing Magazine, 2018, 35(1): 126-136.
[11] 司念文, 张文林, 屈丹, 等. 卷积神经网络表征可视化研究综述[J]. 自动化学报, 2022, 48(8): 1890-1920.
SI Nianwen, ZHANG Wenlin, QU Dan, et al. Representation visualization of convolutional neural networks: A survey[J]. Acta Automatica Sinica, 2022, 48(8): 1890-1920.
[12] 卞景艺, 刘秀丽, 徐小力, 等. 基于多尺度深度卷积神经网络的故障诊断方法[J]. 振动与冲击, 2021, 40(18): 204-211.
BIAN Jingyi, LIU Xiuli, XU Xiaoli, et al. Fault diagnosis method based on a multi-scale deep convolutional neural network[J]. Journal of Vibration and Shock, 2021, 40(18): 204-211.
[13] DING Yifeng, MA Zhanyu, WEN Shaoguo, et al. AP-CNN: Weakly supervised attention pyramid convolutional neural network for fine-grained visual classification[J].IEEE Transactions on Image Processing, 2021, 30: 2826-2836.
[14] NIU Yi, JIAO Yang, SHI Guangming. Attention-shift based deep neural network for fine-grained visual categorization[J].Pattern Recognition, 2021, 116: 107947.
[15] 仇成群, 李沛润, 杨锋, 等. 基于卷积神经网络的前方车辆检测系统研究[J]. 重庆交通大学学报(自然科学版), 2022, 41(11): 58-63.
QIU Chengqun, LI Peirun, YANG Feng, et al. Front vehicle detection system based on convolutional neural network[J]. Journal of Chongqing Jiaotong University (Natural Science), 2022, 41(11): 58-63. |