中文核心期刊
CSCD来源期刊
中国科技核心期刊
RCCSE中国核心学术期刊

重庆交通大学学报(自然科学版) ›› 2025, Vol. 44 ›› Issue (5): 27-37.DOI: 10.3969/j.issn.1674-0696.2025.05.04

• 桥梁与隧道工程 • 上一篇    

大跨度桥梁在非高斯紊流影响下的抖振时域数值模拟

孙立洲1,郭俊华2,叶飞2,罗海生2,王泽政3,4   

  1. (1. 广东省公路建设有限公司,广东 广州 510623; 2. 上海振华重工(集团)股份有限公司,上海 200125; 3. 重庆交通大学 土木工程学院,重庆 400074; 4. 同济大学 土木工程防灾减灾全国重点实验室,上海 200092)
  • 收稿日期:2024-05-09 修回日期:2024-07-15 发布日期:2025-05-23
  • 作者简介:孙立洲(1990—),男,山东聊城人,工程师,硕士,主要从事工程地质方面的工作。E-mail:sunlizhou9001@126.com 通信作者:王泽政(1999—),男,新疆乌鲁木齐人,硕士研究生,主要从事桥梁抗风方面的研究。E-mail:416464043@qq.com

Numerical Simulation of Time Domain of Non-Gaussian Turbulence Induced Buffeting of Long-Span Bridges

SUN Lizhou1, GUO Junhua2, YE Fei2, LUO Haisheng2, WANG Zezheng3,4   

  1. (1. Guangdong Highway Construction Co., Ltd., Guangzhou 510623, Guangdong, China; 2. Shanghai Zhenhua Heavy Industries Co., Ltd., Shanghai 200125, China; 3. College of Civil Engineering, Chongqing Jiaotong University, Chongqing 400074, China; 4. China State Key Lab of Disaster Reduction in Civil Engineering, Tongji University, Shanghai 200092, China)
  • Received:2024-05-09 Revised:2024-07-15 Published:2025-05-23

摘要: 在桥梁抖振分析中,高斯过程假设普遍适用于紊流、风荷载、风致结构振动等3个方面。然而,大气边界层尤其是热带气旋中心区域附近常呈现非高斯紊流特性,其短时高速气流会加剧结构动力响应。因此,分析非高斯紊流对柔性结构特别是大跨度桥梁的影响,并将其风振响应与常规高斯紊流的风振响应进行比较十分有必要。采用有理函数逼近非定常自激气动力和气动导纳的桥梁时域抖振分析方法,对高斯和非高斯紊流激励下的振动进行了计算,采用Hermite多项式变换模拟了非高斯紊流的时程;通过蒙特卡罗模拟,得到了桥梁抖振响应的统计结果。研究结果表明:两类紊流激励下的振动过程均符合高斯分布,但非高斯紊流偏度会显著提升相同风速下的抖振响应均方根值与极值,其中响应增长率随风速增大呈衰减趋势,极值因子则随紊流偏度增加产生微小增幅。

关键词: 桥梁工程; 抖振; 时域分析; 非高斯紊流; 均方根响应; 有限元法

Abstract: In bridge buffeting analysis, the Gaussian process assumption is widely applied to three aspects: turbulence, wind loads, and wind-induced structural vibrations. However, the atmospheric boundary layer, particularly near the central regions of tropical cyclones, often exhibits non-Gaussian turbulence characteristics. The short-duration high-speed airflow in such conditions can amplify structural dynamic responses. Therefore, it is essential to analyze the impact of non-Gaussian turbulence on flexible structures, especially long-span bridges, and compare their wind-induced vibration responses with those under conventional Gaussian turbulence. A time-domain buffeting analysis method for bridges, employing rational function approximations to unsteady self-excited aerodynamic forces and aerodynamic admittance, was utilized to compute vibrations under both Gaussian and non-Gaussian turbulence excitations. The non-Gaussian turbulence time histories were simulated using the Hermite polynomial transformation. Statistical results of bridge buffeting responses were obtained through Monte Carlo simulations. The findings reveal that vibration processes under excitation of both turbulence types conform to Gaussian distributions. However, the skewness of non-Gaussian turbulence significantly increases the root mean square (RMS) values and peak values of buffeting responses at identical wind speeds. Notably, the response growth rate diminishes as wind speed increases, while the peak factor exhibits a slight increase with higher turbulence skewness.

Key words: bridge engineering; bridge buffeting; time domain analysis; non-Gaussian turbulence; RMS response; finite element method

中图分类号: