[1] 黄晓明, 郑彬双. 沥青路面抗滑性能研究现状与展望[J]. 中国公路学报, 2019, 32(4): 32-49.
HUANG Xiaoming, ZHENG Binshuang. Research status and progress for skid resistance performance of asphalt pavements[J].China Journal of Highway and Transport, 2019, 32(4): 32-49.
[2] 谭祺琦, 朱洪洲, 代思, 等. 沥青路面薄层环氧铺装材料抗滑性能衰变规律[J]. 公路交通科技, 2023, 40(9): 18-26.
TAN Qiqi, ZHU Hongzhou, DAI Si, et al.Attenuation rule of skid resistance of thin epoxy paving material for asphalt pavement [J]. Journal of Highway and Transportation Research and Development, 2023, 40(9): 18-26.
[3] 余苗, 童铈尧, 孔令云, 等. 轮胎-沥青路面摩擦测试及抗滑模型研究综述[J]. 公路交通科技, 2020, 37(10): 12-24.
YU Miao, TONG Shiyao, KONG Lingyun, et al. A review of tire-asphalt pavement friction measurement and skid resistance model study[J].Journal of Highway and Transportation Research and Development, 2020,37(10):12-24.
[4] 余苗, 张正基, 罗延生, 等. 胎路耦合接触行为对沥青路面抗滑性能衰变的影响研究[J]. 重庆交通大学学报(自然科学版), 2023, 42(11): 28-35.
YU Miao, ZHANG Zhengji, LUO Yansheng, et al. Influence oftire road coupling contact behavior on the decay of skid resistance of asphalt pavement[J]. Journal of Chongqing Jiaotong University(Natural Science), 2023, 42(11): 28-35.
[5] 余苗, 张强, 石林, 等. 基于胎路动态摩擦行为的沥青路面抗滑性能预估模型研究[J]. 重庆交通大学学报(自然科学版), 2023 ,42 (6): 40-46.
YU Miao, ZHANG Qiang, SHI Lin, et al. Prediction model of skid resistance of asphalt pavement based on dynamic friction behavior of tire/road[J]. Journal of Chongqing Jiaotong University(Natural Science), 2023 ,42(6): 40-46.
[6] 宋永朝, 梁乃兴, 闫功喜, 等. 基于数字图像技术的露石混凝土路面纹理构造抗滑性能[J]. 哈尔滨工业大学学报, 2015, 47(2): 123-128.
SONG Yongchao, LIANG Naixing, YAN Gongxi, et al. Skid-resistant performance of texture structure of exposed-aggregate cement concrete pavement based on digital image technology[J].Journal of Harbin Institute of Technology, 2015, 47(2): 123-128.
[7] 谭忆秋, 肖神清, 熊学堂. 路面抗滑性能检测与预估方法综述[J]. 交通运输工程学报, 2021, 21(4): 32-47.
TAN Yiqiu, XIAO Shenqing, XIONG Xuetang. Review on detection and prediction methods for pavement skid resistance[J].Journal of Traffic and Transportation Engineering, 2021, 21(4): 32-47.
[8] 战友, 李强, 马啸天, 等. 基于宏微观纹理特征融合的路面摩擦性能预测[J]. 浙江大学学报(工学版), 2021, 55(4): 684-694.
ZHAN You, LI Qiang, MA Xiaotian, et al. Macro and microtexture based prediction of pavement surface friction[J]. Journal of Zhejiang University (Engineering Science), 2021, 55(4): 684-694.
[9] LI Q J, ZHAN You, YANG Guangwei, et al. Pavement skid resistance as a function of pavement surface and aggregate texture properties[J]. International Journal of Pavement Engineering, 2020, 21(10): 1159-1169.
[10] WANG Yuanyuan, LAI Xingyu, ZHOU Fei, et al. Evaluation of pavement skid resistance using surface three-dimensional texture data[J]. Coatings, 2020, 10(2): 162.
[11] HU Liqun, YUN Di, LIU Zhuangzhuang, et al. Effect of three-dimensional macrotexture characteristics on dynamic frictional coefficient of asphalt pavement surface[J]. Construction and Building Materials, 2016, 126: 720-729.
[12] YANG Guangwei, LI Q J, ZHAN Y J, et al. Wavelet based macrotexture analysis for pavement friction prediction[J]. KSCE Journal of Civil Engineering, 2018, 22(1): 117-124.
[13] YANG Guangwei, WANG K C P, LI J Q. Multiresolution analysis of three-dimensional (3D) surface texture for asphalt pavement friction estimation[J]. International Journal of Pavement Engineering, 2021, 22(14): 1882-1891.
[14] PATTANAIK M L, CHOUDHARY R, KUMAR B. Prediction of frictional characteristics of bituminous mixes using group method of data handling and multigene symbolic genetic programming[J]. Engineering with Computers, 2020, 36(4): 1875-1888.
[15] 彭毅, 李强, 战友, 等. 基于区域三维纹理特征的路面抗滑性能评估[J]. 东南大学学报(自然科学版), 2020, 50(4): 667-676.
PENG Yi, LI Qiang, ZHAN You, et al. Pavement skid resistance evaluation based on 3D areal texture characterization[J].Journal of Southeast University (Natural Science Edition), 2020, 50(4): 667-676.
[16] ZHAN You, LI J Q, LIU Cheng, et al. Effect of aggregate properties on asphalt pavement friction based on random forest analysis[J]. Construction and Building Materials, 2021, 292: 123467.
[17] YANG Guangwei, LI Q J, ZHAN You, et al. Convolutional neural network-based friction model using pavement texture data[J]. Journal of Computing in Civil Engineering, 2018, 32(6): 04018052.
[18] HU Yuanjiao, SUN Zhaoyun, HAN Yuxi, et al. Evaluate pavement skid resistance performance based on Bayesian-light GBM using 3D surface macrotexture data[J]. Materials, 2022, 15(15): 5275.
[19] ZHAN You, LIU Cheng, DENG Qiangsheng, et al. Integrated FFT and XGBoost framework to predict pavement skid resistance using automatic 3D texture measurement[J]. Measurement, 2022, 188: 110638.
[20] 交通运输部公路科学研究院.公路路基路面现场测试规程: JTG 3450—2019[S]. 北京: 人民交通出版社, 2019.
Research Institute of Highway, Ministry of Transport.Field Test Methods of Highway Subgrade and Pavement: JTG 3450—2019[S]. Beijing: China Communications Press, 2019.
[21] CHEN Tianqi, GUESTRIN C.XGBoost: A Scalable Tree Boosting System[EB/OL]. 2016: arXiv: 1603.02754. http://arxiv.org/abs/1603.02754
[22] 王翔, 郑建国, 张超群, 等. 一种快速收敛的改进贝叶斯优化算法[J]. 华中科技大学学报(自然科学版), 2011, 39(6): 66-70.
WANG Xiang, ZHENG Jianguo, ZHANG Chaoqun, et al. Improved Bayesian optimization algorithm with fast convergence[J].Journal of Huazhong University of Science and Technology (Natural Science Edition), 2011, 39(6): 66-70.
[23] MUKAKA M. A guide to appropriate use of correlation coefficient in medical research[J]. Malawi Medical Journal, 2012, 24: 69-71. |