[1] 周云, 郑佳缘, 郝官旺, 等. 基于气象大数据的大跨桥梁温度效应预测方法[J]. 湖南大学学报(自然科学版), 2024, 51(7): 164-176.
ZHOU Yun, ZHENG Jiayuan, HAO Guanwang, et al. A temperature effect prediction method for long-span bridges based on meteorological big data[J]. Journal of Hunan University (Natural Sciences), 2024, 51(7): 164-176.
[2] 王孟杰. 基于BIM与健康监测的斜拉桥温度场数字融合建模[D]. 南京: 东南大学, 2022.
WANG Mengjie. Digital Fusion Modeling of Temperature Field of Cable-Stayed Bridge Based on BIM and Health Monitoring[D]. Nanjing: Southeast University, 2022.
[3] WEDEL F, MARX S. Application of machine learning methods on real bridge monitoring data[J]. Engineering Structures, 2022, 250: 113365.
[4] WANG Zhiwei, ZHANG Wenming, ZHANG Yufeng, et al. Temperature prediction of flat steel box girders of long-span bridges utilizing in situ environmental parameters and machine learning[J]. Journal of Bridge Engineering, 2022, 27(3): 04022004.
[5] 张洁. 基于气象数据驱动和深度学习的桥梁温度和应变预测[D]. 广州: 广州大学, 2023.
ZHANG Jie. Prediction of Bridge Temperature and Strain Based on Meteorological Data Driving and Deep Learning[D]. Guangzhou: Guangzhou University, 2023.
[6] 王微. 基于不同BP神经网络模型的桥梁温度预测模型构建[J]. 科学技术创新, 2022(34): 157-160.
WANG Wei. Construction of bridge temperature prediction model based on different BP neural network models[J]. Scientific and Technological Innovation, 2022(34): 157-160.
[7] 冯新妍, 贾昕, 黄金泽, 等. ANN-BiLSTM模型在温带荒漠灌丛碳通量数据缺失值插补中的应用[J]. 北京林业大学学报, 2023, 45(9): 62-72.
FENG Xinyan, JIA Xin, HUANG Jinze, et al. Application of ANN-BiLSTM model to long-term gap-filling of carbon flux data in temperate desert shrub[J]. Journal of Beijing Forestry University, 2023, 45(9): 62-72.
[8] 齐建东, 黄金泽, 贾昕. 基于XGBoost-ANN的城市绿地净碳交换模拟与特征响应[J]. 农业机械学报, 2019, 50(5): 269-278.
QI Jiandong, HUANG Jinze, JIA Xin. Simulation of NEE and characterization of urban green-land ecosystem responses to climatic controls based on XGBoost-ANN[J]. Transactions of the Chinese Society for Agricultural Machinery, 2019, 50(5): 269-278.
[9] FANG Weiwei, CAI Weihong, FAN Bo, et al. Kalman-LSTM model for short-term traffic flow forecasting[C]//2021 IEEE 5th Advanced Information Technology, Electronic and Automation Control Conference (IAEAC). IEEE, 2021: 1604-1608.
[10] SONG Xijuan, HUANG Jijiang, SONG Dawei. Air quality prediction based on LSTM-Kalman model[C]//2019 IEEE 8th Joint International Information Technology and Artificial Intelligence Conference (ITAIC). IEEE, 2019: 695-699.
[11] 邓罗晟,车国霖,金建辉.基于Kalman-LSTM模型的悬浮质含沙量测量[J].电子测量与仪器学报,2023,37(5):163-170.
DENG Luosheng, CHE Guolin, JIN Jianhui. Measurement of suspended sediment concentration based on Kalman-LSTM model[J]. Journal of Electronic Measurement and Instrumentation, 2023, 37(5):163-170.
[12] GUO Aiping, JIANG Ajuan, LIN Jie, et al. Data mining algorithms for bridge health monitoring: Kohonen clustering and LSTM prediction approaches[J]. The Journal of Supercomputing, 2020, 76(2): 932-947.
[13] 黄婕, 张丰, 杜震洪, 等. 基于RNN-CNN集成深度学习模型的pm2.5小时浓度预测[J]. 浙江大学学报(理学版), 2019, 46(3): 370-379.
HUANG Jie, ZHANG Feng, DU Zhenhong, et al. Hourly concentration prediction of pm2.5 based on RNN-CNN ensemble deep learning model[J]. Journal of Zhejiang University (Science Edition), 2019, 46(3): 370-379. |