[1] WANG Jie, HE Yaqun, WANG Hengguang, et al. Low-carbon promotion of new energy vehicles: A quadrilateral evolutionary game[J]. Renewable and Sustainable Energy Reviews, 2023, 188: 113795.
[2] 刘霏霏, 袁康, 李骏, 等. 基于液冷的锂离子动力电池散热结构优化设计[J]. 湖南大学学报(自然科学版), 2021, 48(10): 48-56.
LIU Feifei, YUAN Kang, LI Jun, et al. Optimal design of heat dissipation structure of lithium-ion power batteries based on liquid cooling[J]. Journal of Hunan University (Natural Sciences), 2021, 48(10): 48-56.
[3] RANJBAR KERMANI J, MAHLOUJI TAHERI M, PAKZAD H, et al. Hybrid battery thermal management systems based on phase transition processes: a comprehensive review[J]. Journal of Energy Storage, 2024, 86: 111227.
[4] ZHANG Xiong, YAO Jian, ZHU Linpei, et al. Experimental and simulation investigation of thermal runaway propagation in lithium-ion battery pack systems[J]. Journal of Energy Storage, 2024, 77: 109868.
[5] 陈国贺, 吕培召, 李孟涵, 等. 锂离子电池热失控传播特性及其抑制策略研究进展[J]. 储能科学与技术, 2024, 13(7): 2470-2482.
CHEN Guohe, LYU Peizhao, LI Menghan, et al. Research progress on thermal runaway propagation characteristics of lithium-ion batteries and its inhibiting strategies[J]. Energy Storage Science and Technology, 2024, 13(7): 2470-2482.
[6] WANG Gongquan, KONG Depeng, PING Ping, et al. Modeling venting behavior of lithium-ion batteries during thermal runaway propagation by coupling CFD and thermal resistance network[J]. Applied Energy, 2023, 334: 120660.
[7] ZHAO Ding, AN Chao, JIA Zhixue, et al. Structure optimization of liquid-cooled plate for electric vehicle lithium-ion power batteries[J]. International Journal of Thermal Sciences, 2024, 195: 108614.
[8] 李悦, 李天奇, 秦建华, 等. 18650磷酸铁锂电池不同放电倍率下产热机理研究[J]. 电源技术, 2021, 45(8): 1001-1004.
LI Yue, LI Tianqi, QIN Jianhua, et al. Study on the heat generation mechanism of 18650 LiFePO4 battery under different discharge rates[J]. Chinese Journal of Power Sources, 2021, 45(8): 1001-1004.
[9] WANG Dong, TANG Mingyun, WU Chengzhi, et al. Design and numerical study of microchannel liquid cooling structures for lithium batteries[J]. Energy Technology, 2024, 12(6): 2301646.
[10] 安治国, 陈星, 田茂飞, 等. PCM泡沫铝/液冷复合式锂电池热管理[J]. 重庆交通大学学报(自然科学版), 2021, 40(1): 140-146.
AN Zhiguo, CHEN Xing, TIAN Maofei, et al. Thermal management of PCM foam aluminum/liquid cooling composite lithium-ion battery[J]. Journal of Chongqing Jiaotong University (Natural Science), 2021, 40(1): 140-146.
[11] 郭喆晨, 徐俊, 王行早, 等. 基于一维/三维热模型的平板热管/液冷电池热管理系统优化设计[J]. 机械工程学报, 2023, 59(22): 79-88.
GUO Zhechen, XU Jun, WANG Xingzao, et al. Optimal design of flat heat pipe-liquid cooling battery thermal management system based on 1D/3D thermal model[J]. Journal of Mechanical Engineering, 2023, 59(22): 79-88.
[12] 王明悦, 林家源, 刘新华, 等. 基于蛇形通道的电池组液冷方案设计与优化[J]. 北京航空航天大学学报, 2022, 48(1): 166-173.
WANG Mingyue, LIN Jiayuan, LIU Xinhua, et al. Design and optimization of battery pack liquid cooling scheme based on serpentine channel[J]. Journal of Beijing University of Aeronautics and Astronautics, 2022, 48(1): 166-173.
[13] 汪朝晖, 熊肖, 高全杰, 等. 基于仿蜘蛛网流道结构设计的圆柱形锂电池热管理系统性能研究[J]. 机械工程学报, 2023, 59(22): 150-162.
WANG Zhaohui, XIONG Xiao, GAO Quanjie, et al. Performance study of cylindrical lithium battery thermal management system based on the design of spider web-like flow channel structure[J]. Journal of Mechanical Engineering, 2023, 59(22): 150-162.
[14] ZHAN Sen, LIANG Lingfeng, LI Zonghua, et al. Topology optimization of liquid cooling plate for lithium battery heat dissipation based on a bionic leaf-vein structure[J]. International Journal of Heat and Mass Transfer, 2024, 231: 125898. |