[1] ANJNEYA K, DEB A. A review of the discrete element method for modelling the rheology of fresh concrete[C]∥Recent Advances in Computational and Experimental Mechanics, Vol—I. Singapore: Springer Singapore, 2022: 81-95.
[2] FENG Yuan, ZHANG Baifa, XIE Jianhe, et al. Effects of recycled sand and nanomaterials on ultra-high performance concrete: Workability, compressive strength and microstructure[J]. Construction and Building Materials, 2023, 378: 131180.
[3] 李家正, 龚德新, 石妍, 等. 人工砂MB值对水泥砂浆性能的影响研究[J]. 水力发电学报, 2022,41(6): 131-140.
LI Jiazheng, GONG Dexin, SHI Yan, et al. Study on influence of artificial sand MB value on mortar performances[J]. Journal of Hydroelectric Engineering, 2022, 41(6): 131-140.
[4] XIN Luchao, JI Xiang, YANG Xiao, et al. Nanoscale insight into fluidity improvement of supplementary cementitious materials on concrete: The nano-lubrication process[J].Journal of Building Engineering, 2024, 82: 108193.
[5] 黄柯宇, 陶铁军, 徐跃生, 等. 聚羧酸减水剂复配工艺对自密实清水混凝土工作性能影响研究[J]. 混凝土, 2023(5): 134-137.
HUANG Keyu, TAO Tiejun, XU Yuesheng, et al. Effect of polycarboxylate superplasticizer compounding process on apparent quality of self-compacting fair-faced concrete[J]. Concrete, 2023(5): 134-137.
[6] YAO Jialiang, LIU Yinggang, et al. Pressure bleeding rate and crack resistance of high-strength concrete with good fluidity[J].Journal of Testing and Evaluation, 2022, 50(6): 3078-3093.
[7] SINGH A, SINGH R B, SINGH B. Thixotropic evaluation of a highly-workable and a flowable concrete made with rice husk ash[J]. Journal of Building Engineering, 2023, 67: 105990.
[8] 南雪丽, 李荣洋, 姬建瑞, 等. 中流动性混凝土工作性与砂浆流变特性相关性研究[J]. 重庆交通大学学报(自然科学版), 2022, 41(4): 81-86.
NAN Xueli, LI Rongyang, JI Jianrui, et al. Correlation between medium fluidity concrete workability and mortar rheological properties[J]. Journal of Chongqing Jiaotong University (Natural Science), 2022, 41(4): 81-86.
[9] LEI Lei, HIRATA T, PLANK J. 40 years of PCE superplasticizers—History, current state-of-the-art and an outlook[J].Cement and Concrete Research, 2022, 157: 106826.
[10] 程雪松, 赵林嵩, 郑刚, 等. 配比对盾构施工惰性浆液性能影响研究[J]. 重庆交通大学学报(自然科学版), 2023, 42(11): 15-20.
CHENG Xuesong, ZHAO Linsong, ZHENG Gang, et al. Influence of proportioning on the performance of inert slurry in shield tunnel construction[J]. Journal of Chongqing Jiaotong University (Natural Science), 2023, 42(11): 15-20.
[11] GE Haosheng, SUN Zhenping, LU Zichen, et al. Influence and mechanism analysis of different types of water reducing agents on volume shrinkage of cement mortar[J]. Journal of Building Engineering, 2024, 82: 108204.
[12] SHARMA A, GUPTA S, HUSAIN M N, et al. Factors affecting the rheology of cement-based composites: A review[J]. Journal of the American Ceramic Society, 2025, 108(6): e20429.
[13] 梁云涛. 基于膜厚理论与可压缩堆积模型的混凝土工作性能预测[D]. 重庆: 重庆交通大学, 2022.
LIANG Yuntao. Prediction of Concrete Workability Based on Water Film Thickness Theory and Compressible Packing Model[D]. Chongqing: Chongqing Jiaotong University, 2022.
[14] 胡秋辉, 罗强, 张良, 等. 基于水膜厚度理论的流态固化土流动性能试验分析[J]. 浙江大学学报(工学版), 2025, 59(7): 1344-1352.
HU Qiuhui, LUO Qiang, ZHANG Liang, et al. Experimental analysis of flow properties of fluidized solidified soil based on water film thickness theory[J]. Journal of Zhejiang University (Engineering Science), 2025, 59(7): 1344-1352.
[15] 张倩倩, 刘建忠, 张丽辉, 等. 矿物掺合料对低水胶比浆体流变性能的影响机制研究[J]. 材料导报, 2020, 34(22): 22054-22057.
ZHANG Qianqian, LIU Jianzhong, ZHANG Lihui, et al. Effect of mineral admixtures on rheological properties of paste with low water-binder ratio and its mechanism[J]. Materials Reports, 2020, 34(22): 22054-22057. |