中文核心期刊
CSCD来源期刊
中国科技核心期刊
RCCSE中国核心学术期刊

重庆交通大学学报(自然科学版) ›› 2020, Vol. 39 ›› Issue (11): 86-91.DOI: 10.3969/j.issn.1674-0696.2020.11.13

• 道路与铁道工程 • 上一篇    下一篇

HSI空间在低照度沥青混合料图像处理中的应用

曾晟1,梁乃兴1,杨遂中2,田晓峰2   

  1. (1. 重庆交通大学 土木工程学院,重庆 400074; 2. 郑州路桥建设投资集团有限公司,河南 郑州 450000)
  • 收稿日期:2019-05-15 修回日期:2019-10-21 出版日期:2020-11-19 发布日期:2020-11-23
  • 作者简介:曾晟(1990—),男,重庆人,博士研究生,主要从事交通运输工程方面的研究。E-mail:416365192@qq.com
  • 基金资助:
    云南省交通运输厅科技项目(云交科2017(A)015);重庆市研究生科研创新项目(2017B0106);重庆市教委科技项目(KJQN201904008)

Application of HSI Color Space in Image Processing of Asphalt Mixture under Low Illumination Conditions

ZENG Sheng1,LIANG Naixing1,YANG Suizhong2,TIAN Xiaofeng2   

  1. (1. School of Civil Engineering, Chongqing Jiaotong University, Chongqing 400074, China; 2. Zhengzhou Road & Bridge Construction Investment Group Co., Ltd., Zhengzhou 450000, Henan, China)
  • Received:2019-05-15 Revised:2019-10-21 Online:2020-11-19 Published:2020-11-23

摘要: 针对低照度条件下摊铺混合料图像预处理中集料颗粒分割不准确的问题,笔者利用数字图像HSI颜色空间Retinnex亮度增强的方法,通过对两种光照条件下采集到的摊铺沥青混合料数字图像,分别采用传统RGB色彩空间和HSI色彩空间图像亮度增强方法进行预处理。对比传统RGB颜色空间处理方法和笔者HSI颜色空间图像处理方法,对图像预处理后图像的灰度共生矩阵与二值图像中9.5 mm以上集料面积占比的分割准确性,进行了适用于低照度条件下,摊铺沥青混合料图像图像处理技术的研究。研究结果表明:通过笔者HSI颜色空间图像亮度增强预处理算法,低照度工况下图像灰度共生矩阵熵和能量与光线充足工况下下图像结果接近,集料面积比与抽提筛分试验结果误差较小;HSI颜色空间摊铺沥青混合料数字图像预处理方法在低照度条件下对图像还原度较高,集料分割识别准确,适用于实际工程中光照条件较暗条件下沥青混合料图像的预处理的应用。

关键词: 道路工程, 沥青混合料, 数字图像处理, HSI颜色空间, 图像亮度增强, 图像分割

Abstract: In view of the inaccurate segmentation of aggregate particles in the image preprocessing of paving mixture under low illumination conditions, the retinnex brightness enhancement method in HSI color space of digital image was utilized. Through the digital images of asphalt mixture collected under two kinds of light conditions, the traditional RGB color space and HSI color space image brightness enhancement methods were used respectively for preprocessing. Compared with the traditional RGB color space processing method and HSI color space image processing method, the segmentation accuracy of gray level co-occurrence matrix of image preprocessing and the proportion of aggregate area ratio above 9.5 mm in binary image after image preprocessing was studied, which was suitable for the image processing of paving asphalt mixture under low illumination. The research results show that: through the proposed HSI color space image brightness enhancement preprocessing algorithm, the entropy and energy of gray level co-occurrence matrix under low illumination condition are close to those under sufficient light condition, and the error between aggregate area ratio and extraction screening test results is small. The digital image preprocessing method of paving asphalt mixture in HSI color space has high capability of image restoration and accuracy of aggregate segmentation recognition under low illumination conditions, which is suitable for the application of asphalt mixture image preprocessing under dark light conditions in practical engineering.

Key words: highway engineering, asphalt mixture, digital image processing, HSI color space, image brightness enhancement, image segmentation

中图分类号: