[1] PATLE B K,BABU L G, PANDEY A, et al. A review: On path planning strategies for navigation of mobile robot[J]. Defense Technology, 2019, 15(4): 582-606.
[2] 于振中, 李强, 樊启高. 智能仿生算法在移动机器人路径规划优化中的应用综述[J]. 计算机应用研究, 2019, 36(11): 3210-3219.
YU Zhenzhong, LI Qiang, FAN Qigao. Survey on application of bioinspired intelligent algorithms in path planning optimization of mobile robots[J]. Application Research of Computers, 2019, 36(11): 3210-3219.
[3] 王春颖, 刘平, 秦洪政. 移动机器人的智能路径规划算法综述[J]. 传感器与微系统, 2018,37 (8): 5-8.
WANG Chunying, LIU Ping, QIN Hongzheng. Review on intelligent path planning algorithm of mobile robots[J]. Transducer and Microsystem Technologies, 2018,37(8): 5-8.
[4] MIRJALILI S. SCA:A sine cosine algorithm for solving optimization problems[J]. Knowledge-Based Systems, 2016, 96: 120-133.
[5] YILDIZ B S, YILDIZ A R. Comparison of grey wolf, whale, water cycle, ant lion and sine-cosine algorithms for the optimization of a vehicle engine connecting rod
[J].Materials Testing, 2018, 60(3): 311-315.
[6] OLIVA D, HINOJOSA S,ABD ELAZIZ M, et al. Context based image segmentation using antlion optimization and sine-cosine algorithm[J]. Multimedia Tools and Applications, 2018, 77(19): 25761.
[7] NENAVATH H, JATOTH R K, DAS S. A synergy of the sine-cosine algorithm and particle swarm optimizer for improved global optimization and object tracking [J].Swarm and Evolutionary Computation, 2018, 43: 1-30.
[8] ATTIA A F, EL SEHIEMY R A, HASANIEN H M. Optimal power flow solution in power systems using a novel sine-cosine algorithm[J]. International Journal of Electrical Power & Energy Systems, 2018, 99: 331-343.
[9] 强宁, 高洁, 康凤举. 基于PSO和三次样条插值的多机器人全局路径规划[J]. 系统仿真学报, 2017, 29(7): 1397-1404.
QIANG Ning, GAO Jie, KANG Fengju. Multi-robots global path planning based on PSO algorithm and cubic spline[J].Journal of System Simulation, 2017, 29(7): 1397- 1404.
[10] ZHANG Wei, ZHOU Guopeng, NI Hao, et al. A modified hybrid maximum power point tracking method for photovoltaic arrays under partially shading condition
[J]. IEEE Access, 2019, 7: 160091-160100.
[11] RAO R V, SAVSANI V J, VAKHARIA D P. Teaching-learning-based optimization: A novel method for constrained mechanical design optimization problems[J]. Computer-Aided Design, 2011, 43(3): 303-315.
[12] GUPTA S, DEEP K. A hybrid self-adaptive sine cosine algorithm with opposition based learning[J]. Expert Systems with Applications, 2019, 119: 210-230.
[13] LI Xia, LUO Jianping, CHEN Minrong, et al. An improved shuffled frog-leaping algorithm with extremal optimisation for continuous optimization[J]. Information Sciences, 2012, 192: 143-151.
[14] KARABOGA D, AKAY B. A comparative study of artificial bee colony algorithm[J]. Applied Mathematics and Computation, 2009, 214(1): 108-132.
[15] ABD ELAZIA M, OLIVA D, XIONG S W. An improved opposition-based sine cosine algorithm for global optimization[J]. Expert Systems with Applications, 2017, 90: 484-500. |