[1] 陈林,曾玉烨,颜泽峰,等.车辆撞击下钢筋混凝土桥墩的动力响应及损伤特征[J].振动与冲击,2019,38(13):261-267.
CHEN Lin, ZENG Yuye, YAN Zefeng, et al. Dynamic response and damage characteristics of a RC pier under vehicle impacting[J]. Journal of Vibration and Shock, 2019, 38(13): 261-267.
[2] 周德源,刘长勋.车辆撞击作用下RC桥墩动力响应[J].建筑科学与工程学报,2020,37(2):11-19.
ZHOU Deyuan, LIU Changxun. Dynamic response of RC bridge pier under vehicle impact load[J]. Journal of Architecture and Civil Engineering, 2020, 37(2): 11-19.
[3] 王向阳,吴琼.城市跨线桥梁的车-桥墩碰撞模拟分析[J].公路与汽运,2017(5):142-145.
WANG Xiangyang, WU Qiong. Simulation analysis of vehicle-pier collision of urban overpass bridges[J]. Highway and Automotive Applications, 2017(5): 142-145.
[4] 曹伟,吴合良,贺耀北.车撞作用下桥墩非线性损伤及加固措施研究[J].中外公路,2017,37(4):147-151.
CAO Wei, WU Heliang, HE Yaobei. Study on nonlinear damage and reinforcement measures of piers under vehicle impact[J]. Journal of China & Foreign Highway, 2017, 37(4): 147-151.
[5] 徐鑫.UHPFRC增强桥墩抗车撞性能研究[D].长沙:湖南大学,2018.
XU Xin.Performance of UHPFRC-Strengthened Bridge Column Subjected to Vehicle Collisions[D]. Changsha: Hunan University, 2018.
[6] ZHANG Xihong, HAO Hong, LI Chao. Experimental investigation of the response of precast segmental columns subjected to impact loading[J]. International Journal of Impact Engineering, 2016, 95: 105-124.
[7] ZHANG Xihong, HAO Hong, LI Chao. The effect of concrete shear key on the performance of segmental columns subjected to impact loading[J]. Advances in Structural Engineering, 2016, 20: 352-373.
[8] DO T V, PHAM T, HAO Hong. Numerical investigation of the behavior of precast concrete segmental columns subjected to vehicle collision[J].Engineering Structures, 2018, 156: 375-393.
[9] SHIM C S, CHUNG C H, KIM HH. Experimental evaluation of seismic performance of precast segmental bridge piers with a circular solid section[J]. Engineering Structures, 2008, 30: 3782-3792.
[10] 黄云青.预制拼装桥墩高宽比及连接方式对其抗震性能影响的数值分析[D].青岛:青岛理工大学,2018.
HUANG Yunqing. Numerical Analysis of Influence of Aspect Ratio and Connection Mode on Seismic Performance of Precast Segmental Bridge Piers[D]. Qingdao: Qingdao University of Technology, 2018.
[11] 王海涛,王立成.钢纤维高强轻骨料混凝土弯曲韧性与抗冲击性能[J].建筑材料学报,2013,16(6):1082-1086.
WANG Haitao, WANG Licheng. Flexural toughness and impact resistance of steel fiber reinforced high-strength lightweight aggregate concrete[J]. Journal of Building Material, 2013, 16(6): 1082-1086.
[12] 莫金生,马骉,张洁,等.UHPC连接节段拼装桥墩拟静力试验[J].结构工程师,2018,34(增刊):88-95.
MO Jinsheng, MA Biao, ZHANG Jie, et al. Quasi-static testing of prefabricated assembly pillars connected with UHPC[J]. Structure Engineers, 2018, 34(Sup): 88-95.
[13] MOHAN P, MARZOUGUI D. Validation of a single unit truck model for roadside hardware impact[J]. International Journal of Vehicle Systems Modelling and Testing, 2007, 2(1): 1-15.
[14] 陈林.桥墩防车辆撞击研究[D].长沙:湖南大学,2015.
CHEN Lin.Research on Bridge Piers Subjected to Vehicle Collisions[D]. Changsha: Hunan University, 2015.
[15] SEMENDARY A A, SVECOVA D. Factors affecting bond between precast concrete and cast in place ultra high performance concrete (UHPC)[J]. Engineering Structures, 2020, 216: 1-15.
[16] YOO D Y, BANTHIA N, KIM S W, et al. Response of ultra-high-performance fiber-reinforced concrete beams with continuous steel reinforcement subjected to low-velocity impact loading[J]. Composite Structures, 2015, 126: 233-245.
[17] COTSOVOS D M, STATHOPOULOS N D, ZERIS C A. Behavior of RC beams subjected to high rates of concentrated loading[J].Journal of Structural Engineering, 2008, 134(12): 1839-1851.
[18] 乔朋,钟承星,王宗义,等.我国车-桥耦合振动的研究现状及发展趋势[J].重庆交通大学学报(自然科学版),2019,38(12):26-37.
QIAO Peng, ZHONG Chengxing, WANG Zongyi, et al. Research status and development trend of vehicle-bridge coupling vibration in China[J]. Journal of Chongqing Jiaotong University(Natural Science), 2019, 38 (12): 26-37.
[19] 张爱锋,刘少康,姚苗苗,等.船桥碰撞结构损伤及船撞力影响因素分析[J].重庆交通大学学报(自然科学版),2021,40(3):121-127.
ZHANG Aifeng, LIU Shaokang, YAO Miaomiao, et al. Analysis of structural damage caused by ship-bridge collision and influencing factors of ship collision force[J]. Journal of Chongqing Jiaotong University (Natural Science), 2021, 40(3): 121-127. |