[1] 苏卫国,戴民松.基于沥青路面使用性能衰变规律的高速公路预防性养护计划研究[J].公路工程,2020,45(5):174-179.
SU Weiguo, DAI Minsong. Study on the preventive maintenance plan of expressway based on the decay law of asphalt pavement performance [J].Highway Engineering, 2020, 45 (5): 174-179.
[2] WANG Zhichen, Guo Naisheng, WANG Shuang, et al. Prediction of highway asphalt pavement performance based on Markov chain and artificial neural network approach[J]. Journal of Supercomputing,2021,77(2): 1354-1376.
[3] 李海莲,林梦凯,王起才.高速公路沥青路面使用性能模糊区间评价方法研究[J].重庆交通大学学报(自然科学版),2020,39(9):80-87.
LI Hailian, LIN Mengkai, WANG Qicai. Freeway asphalt pavement performance based on Fuzzy Interval Evaluation method [J]. Journal of Chongqing Jiaotong University(Natural Science),2020,39 (9):80-87.
[4] 刘佳.基于熵值赋权法沥青路面使用性能衰变模型研究[J].公路,2018,63(12):91-96.
LIU Jia. Study on decay model of asphalt pavement performance based on entropy weighting method[J]. Highway, 2018, 63(12): 91-96.
[5] 李海莲,林梦凯,王起才.基于IFA-SVM的高速公路沥青路面使用性能预测[J].公路交通科技,2019,36(12):8-14,78.
LI Hailian, LIN Mengkai, WANG Qicai. Prediction of performance of expressway asphalt pavement based on IFA-SVM [J]. Journal of Highway and Transportation Research and Development, 2019, 36 (12): 8-14, 78.
[6] 余婷,裴莉莉,李伟,等.基于随机森林算法的路面状况指数预测[J].公路交通科技,2021,38(10):16-23.
YU Ting,PEI Lili,LI Wei,et al. Prediction of pavement surface condition index based on random forest algorithm [J]. Journal of Highway and Transportation Research and Development,2021,38 (10):16-23.
[7] 陈仕周,李山,熊峰,等.基于GA-灰色神经网络的沥青路面使用性能预测[J].重庆交通大学学报(自然科学版),2019,38(2):44-50.
CHEN Shizhou,LI Shan,XIONG Feng,et al. Forecasting of asphalt pavement performance based on GA-gray neural network[J].Journal of Chongqing Jiaotong University (Natural Science), 2019, 38(2): 44-50.
[8] 王志祥,李建阁,陈楚鹏. 基于变权重评价的沥青路面使用性能灰色预测 [J].重庆交通大学学报(自然科学版),2021,40(5):95-101.
WANG Zhixiang,LI Jiange,CHEN Chupeng. Grey prediction of asphalt pavement performance based on variable weight evaluation [J]. Journal of Chongqing Jiaotong University (Natural Science), 2021, 40(5): 95-101.
[9] 靳明,张军,郭晶,等.基于灰色系统理论的沥青路面使用性能预测及养护决策研究[J].公路工程,2019,44(4):221-224, 263.
JIN Ming, ZHANG Jun, GUO Jing, et al. Research on performance prediction and maintenance decision of asphalt pavement based on grey system theory [J]. Highway Engineering, 2019, 44(4): 221-224, 263.
[10] LIU Guoguang,NIU Fujun,WU Zhiwei. Life-cycle performance prediction for rigid runway pavement using artificial neural network[J]. International Journal of Pavement Engineering, 2020, 21(14): 1806-1814.
[11] 章天杰,韩海航. 基于残差神经网络的沥青路面裂缝识别分类研究[J].公路,2021,66(10):24-29.
ZHANG Tianjie, HAN Haihang. Research on identification and classification of asphalt pavement cracks using residual neural network [J]. Highway, 2021, 66(10): 24-29.
[12] 段铭钰,袁瑞甫,杨艺. 基于改进RBF神经网络的采煤机截割煤岩性状智能识别[J].河南理工大学学报(自然科学版), 2022, 41(1): 43- 51.
DUAN Mingyu, YUAN Ruifu, YANG Yi. Intelligent recognition of coal and rock properties in shearer cutting process based on improved RBF neural network [J]. Journal of Henan Polytechnic University (Natural Science), 2022, 41(1): 43-51.
[13] 张秀玲,代景欢,李家欢,等. 基于PCA-RBF的板形识别及FPGA软实现 [J].矿冶工程,2019,39(1):109-113.
ZHANG Xiuling,DAI Jinghuan,LI Jiahuan,et al. Flatness recognition based on PCA-RBF network and soft implementation in FPGA [J]. Mining and Metallurgical Engineering, 2019, 39(1): 109-113.
[14] 谢杰辉,牛富俊,彭智育,等.滨海高速公路软基变形规律及沉降预测应用[J].华南理工大学学报(自然科学版),2021,49(4):97-107.
XIE Jiehui,NIU Fujun,PENG Zhiyu,et al. Deformation law and settlement prediction application of soft soil subgrade in coastal expressway[J]. Journal of South China University of Technology (Natural Science Edition), 2021, 49 (4): 97-107.
[15] 邓思源,周兰庭,王飞,等.大坝变形的XGBoost-LSTM变权组合预测模型及应用[J]. 长江科学院院报,2022,39(10):72-79.
DENG Siyuan,ZHOU Lanting,WANG Fei,et al. XGBoost-LSTM variable weight combination prediction model for dam deformation and its application[J]. Journal of Yangtze River Scientific Research Institute, 2022, 39(10): 72-79.
[16] 王帅伟,于少将,李绍康,等.基于RS-PCA-GA-SVM的砂土液化预测方法研究[J].地震工程学报,2019,41(2):445-453.
WANG Shuaiwei,YU Saojiang,LI Shaokang,et al. A method of predicting sand liquefaction based on RS-PCA-GA-SVM [J]. China Earthquake Engineering Journal,2019,41(2):445-453.
[17] 陈勇, 李鹏, 张忠军, 等.基于PCA-GA-LSSVM的输电线路覆冰负荷在线预测模型[J].电力系统保护与控制, 2019, 47(10): 110-119.
CHEN Yong, LI Peng, ZHANG Zhongjun, et al. Online prediction model for power transmission line icing load based on PCA-GA-LSSVM[J]. Power System Protection and Control, 2019, 47 (10): 110-119. |