重庆交通大学学报(自然科学版) ›› 2023, Vol. 42 ›› Issue (7): 128-135.DOI: 10.3969/j.issn.1674-0696.2023.07.17
• 交通基础设施工程 • 上一篇
王振报1,李慧庆1,刘卓2
收稿日期:
2022-01-26
修回日期:
2022-04-23
发布日期:
2023-09-08
作者简介:
王振报(1978—),男,黑龙江铁力人,教授,博士,主要从事多元数据与交通规划方面的研究。E-mail:wangzhenbao@hebeu.edu.cn
通信作者:刘卓(1990—),男,北京人,讲师,博士,主要从事交通智能仿真方面的研究。E-mail:liuzhuo66@bjut.edu.cn
基金资助:
WANG Zhenbao1, LI Huiqing1, LIU Zhou2
Received:
2022-01-26
Revised:
2022-04-23
Published:
2023-09-08
摘要: 在确定共享单车客流最佳空间单元集计方法后,进行城市建成环境对共享单车还车量的影响程度分析。以厦门岛为例,将共享单车还车位置数据进行集计得出的空间单元还车量作为因变量,计算各空间单元的建成环境指标作为自变量,利用最小二乘法、地理加权回归、多尺度地理加权回归模型,针对8种空间单元划分方法进行回归分析,确定拟合优度最佳的空间单元划分方法,并分析建成环境变量影响程度的空间异质性。研究结果表明:①采用交通分区进行还车量集计的多尺度地理加权回归模型拟合优度最佳;②公司企业兴趣点密度、建筑密度、交叉口数量和共享单车电子围栏数量与还车量呈正相关;空间封闭度、科研教育兴趣点密度、至最近地铁站距离和兴趣点多样性与还车量呈负相关;最近公交站距离在西南部呈负相关,在西北、北部和东北部呈正相关。研究思路和方法为提高共享单车还车量预测模型精度提供了参考,建成环境变量影响程度的空间异质性结果为不同区位提出差异化的建成环境更新策略提供了科学依据。
中图分类号:
王振报1,李慧庆1,刘卓2. 城市建成环境对共享单车还车量的影响分析[J]. 重庆交通大学学报(自然科学版), 2023, 42(7): 128-135.
WANG Zhenbao1, LI Huiqing1, LIU Zhou2. Influence Analysis of Urban Built Environment on the Return Quantity of Shared Bikes[J]. Journal of Chongqing Jiaotong University(Natural Science), 2023, 42(7): 128-135.
[1] 金昱.国际大城市交通碳排放特征及减碳策略比较研究[J].国际城市规划,2022,37(2):25-33.
JIN Yu. Comparative study on characteristic and planning strategies of transportation carbon emissions in global megacities[J].Urban Planning International, 2022, 37(2): 25-33. [2] 中国政府网.多部门关于印发绿色出行行动计划(2019—2022年)的通知[EB/OL].(2019-06-03) [2022-01-09].http:∥www.gov.cn/xinwen/2019-06/03/ content_5397034.htm. Chinese Government Website.Multi-Sector Notice on the Issuance of Green Travel Action Plan(2019—2022)[EB/OL]. (2019-06-03)[2022-01-09]. http:∥www. gov.cn/xinwen/2019-06/03/content_5397034.htm. [3] WANG Mingshu, ZHOU Xiaolu. Bike-sharing systems and congestion: Evidence from US cities[J]. Journal of Transport Geography, 2017, 65: 147-154. [4] ZHANG Yongping, MI Zhifu. Environmental benefits of bike sharing: A big data-based analysis[J]. Applied Energy, 2018, 220: 296-301. [5] 丁川,张慧,杨励雅,等.建成环境与交通需求管理的协同效应研究展望[J].西部人居环境学刊,2021,36(4):45-51. DING Chuan, ZHANG Hui, YANG Liya, et al. Analysis of the research problem on the synergistic effect between the built environment and transportation demand management[J]. Journal of Human Settlements in West China, 2021, 36(4): 45-51. [6] 李文翔,唐桂孔,刘博,等.基于摩拜骑行数据的上海市共享单车减排效益时空分析[J].环境科学学报,2021,41(11):4752-4759. LI Wenxiang, TANG Guikong, LIU Bo, et al. Temporal and spatial analysis of the emission reduction benefits of bike-sharing in Shanghai based on Mobike riding data[J]. Acta Scientiae Circumstantiae, 2021, 41(11): 4752-4759. [7] KOU Zhaoyu, CAI Hua. Comparing the performance of different types of bike share systems[J]. Transportation Research Part D: Transport and Environment, 2021, 94: 1-21. [8] BARBOUR N, ZHANG Yu, MANNERING F. A statistical analysis of bike sharing usage and its potential as an auto-trip substitute[J]. Journal of Transport & Health, 2019, 12: 253-262. [9] 刘永贤,牛占文.共享单车造成的城市治理问题研究[J].城市发展研究,2021,28(5):135-140. LIU Yongxian, NIU Zhanwen. Research on urban governance problems caused by shared bikes[J]. Urban Development Studies, 2021, 28(5): 135-140. [10] JI Yanjie, MA Xinwei, HE Mingjia, et al. Comparison of usage regu-larity and its determinants between docked and dockless bike-sharing systems: A case study in Nanjing, China[J]. Journal of Cleaner Production, 2020, 255: 1-11. [11] 马新卫,季彦婕,金雨川,等.基于时空地理加权回归的共享单车需求影响因素分析[J].吉林大学学报(工学版),2020,50(4):1344-1354. MA Xinwei, JI Yanjie, JIN Yuchuan, et al. Geographically and temporally weighted regression for modeling spatio-temporal variation in dockless bikeshare usage demand[J]. Journal of Jilin University(Engineering and Technology Edition), 2020, 50(4): 1344-1354. [12] 林鹏飞,翁剑成,胡松,等.基于地理加权回归的共享单车需求影响因素分析[J].交通工程,2020,20(2):65-72. LIN Pengfei, WENG Jiancheng, HU Song, et al. Analysis of influencing factors of dockless bicycle share demand based on geographically weighted regression [J]. Journal of Transportation Engineering, 2020, 20(2): 65-72. [13] LI Zhitao, SHANG Yuzhen, ZHAO Guanwei, et al. Exploring the multiscale relationship between the built environment and the metro-oriented dockless bike-sharing usage[J]. International Journal of Environmental Research and Public Health, 2022, 19(4): 1-21. [14] 冉林娜,李枫.共享单车出行特性与出行行为分析[J].交通信息与安全,2017,35(6):93-100. RAN Linna, LI Feng. An analysis on characteristics and behaviors of traveling by bike-sharing[J]. Journal of Transport Information and Safety, 2017, 35(6): 93-100. [15] 钱佳,汪德根,牛玉.城市居民使用市内公共自行车的满意度影响因素分析——以苏州市为例[J].地理研究,2014,33(2):358-371. QIAN Jia, WANG Degen, NIU Yu. Analysis of the influencing factors of urban residents to use urban public bikes: A case study of Suzhou[J].Geographical Research, 2014, 33(2): 358-371. [16] TALEQANI A R, HOUGH J, NYGARD K E. Public opinion ondockless bike sharing: A machine learning approach[J]. Journal of the Transportation Research Board, 2019, 2673(4): 195-204. [17] 王在涛.城市公共自行车系统管理模式分析[J].城市发展研究,2013,20(9):93-97. WANG Zaitao. Towards the modes of managing the urban bike sharing system[J]. Urban Development Studies, 2013, 20(9): 93-97. [18] 徐建闽,秦筱然,马莹莹.公共自行车多层次分区调度方法研究[J].交通运输系统工程与信息,2017,17(1):212-219. XU Jianmin, QIN Xiaoran, MA Yingying. Public bicycle multilevel partition scheduling method[J]. Journal of Transportation Systems Engineering and Information Technology, 2017, 17(1): 212-219. [19] 于德新,张行,王薇,等.共享单车调度模型及算法研究[J].重庆交通大学学报(自然科学版),2020,39(7):1-7. YU Dexin, ZHANG Hang, WANG Wei, et al. Scheduling model and algorithm for shared bicycle[J]. Journal of Chongqing Jiaotong University(Natural Science), 2020, 39(7): 1-7. [20] 关宏志,卢笙,宋茂灿.共享单车分层调度策略研究[J].重庆交通大学学报(自然科学版),2020,39(2):1-7. GUAN Hongzhi, LU Sheng, SONG Maocan. Hierarchical scheduling strategy for free-floating bike-sharing[J]. Journal of Chongqing Jiaotong University(Natural Science), 2020, 39(2): 1-7. [21] MOONEY S J, HOSFORD K, HOWE B,et al. Freedom from the station: Spatial equity in access to dockless bike share[J]. Journal of Transport Geography, 2019, 74: 91-96. [22] 张泽华,林晓言,张雅萍.供给侧视角下共享单车现存问题经济本质分析[J].城市发展研究,2017,24(11):83-88. ZHANG Zehua, LIN Xiaoyan, ZHANG Yaping. The economic nature and solutions of bicycle-sharing[J]. Urban Development Studies, 2017, 24(11): 83-88. [23] GU Tianqi, KIM I, CURRIE G. To be or not to be dockless: Empirical analysis of dockless bikeshare development in China[J]. Transportation Research Part A: Policy and Practice, 2019, 119: 122-147. [24] 崔树强,朱佩娟,张美芳,等.城市建成环境对共享单车使用空间分布的影响——以长沙市为例[J].西南大学学报(自然科学版),2020,42(6):89-99. CUI Shuqiang, ZHU Peijuan, ZHANG Meifang, et al. The influence of the built environment on the spatial distribution of bicycle sharing use: Taking Changsha as an example[J]. Journal of Southwest Univer-sity(Natural Science Edition), 2020, 42(6): 89-99. [25] JI Yanjie, MA Xinwei, YANG Mingyuan, et al. Exploring spatially varying influences on metro-bikeshare transfer: A geographically weighted poisson regression approach[J]. Sustainability, 2018, 10(5): 1-23. [26] BAO Jie, SHI Xiaomeng, ZHANG Hao. Spatial analysis of bikeshare ridership with smart card and POI data using geographically weighted regression method[J]. IEEE Access, 2018, 6: 76049-76059. [27] SHEN Yu, ZHANG Xiaohu, ZHAO Jinhua. Understanding the usage of dockless bike sharing in Singapore[J]. International Journal of Sustainable Transportation, 2018, 12(9): 686-700. [28] 沈体雁,于瀚辰,周麟,等.北京市二手住宅价格影响机制——基于多尺度地理加权回归模型(MGWR)的研究[J].经济地理,2020,40(3):75-83. SHEN Tiyan, YU Hanchen, ZHOU Lin, et al. On hedonic price of second-hand houses in Beijing based on multi-scale geographically weighted regression: Scale law of spatial heterogeneity[J]. Economic Geography, 2020, 40(3): 75-83. [29] 周丽霞,吴涛,蒋国俊,等.长三角地区PM2.5浓度对土地利用/覆盖转换的空间异质性响应[J].环境科学,2022,43(3):1201-1211. ZHOU Lixia, WU Tao, JIANG Guojun, et al. Spatial heterogeneity of PM2.5 concentration in response to land use /cover conversion in the Yangtze River Delta Region[J]. Environmental Science, 2022, 43(3): 1201-1211. [30] MAITI A, ZHANG Qi, SANNIGRAHI S, et al. Exploring spatio-temporal effects of the driving factors on COVID-19 incidences in the contiguous United States[J]. Sustainable Cities and Society, 2021, 68: 1-15. [31] QU Xinyu, ZHU Xinyan, XIAO Xiongwu, et al. Exploring the influences of point-of-interest on traffic crashes during weekdays and weekends via multi-scale geographically weighted regression[J]. ISPRS International Journal of Geo-Information, 2021, 10(11): 1-19. [32] 高德辉,许奇,陈培文,等.城市轨道交通客流与精细尺度建成环境的空间特征分析[J].交通运输系统工程与信息,2021,21(6):25-32. GAO Dehui, XU Qi, CHEN Peiwen, et al. Spatial characteristics of urban rail transit passenger flows and fine-scale built environment[J]. Journal of Transportation Systems Engineering and Information Technology, 2021, 21(6): 25-32. [33] WorldPop[EB/OL]. (2021-12-04)[2022-01-26]. https:∥www.worldpop. org/. [34] 厦门市工业和信息化局.厦门市大数据安全开放平台[EB/OL].(2021-12-04)[2022-01-26].https:∥data.xm.gov.cn/opendata/datas /#/catalog_list. Xiamen Municipal Bureau of Industry and Information Technology. Xiamen Big data Security Open Platform[EB/OL]. (2021-12-04)[2022-01-26]. https:∥data.xm.gov.cn/opendata/datas/#/catalog_list. [35] SUGIURA N. Further analysts of the data by Akaikes information criterion and the finite corrections: Further analysts of the data by Akaikes[J]. Communications in Statistics-theory and Methods, 1978, 7(1): 13-26. [36] HANDY S L, BOARNET M G, EWING R, et al. How the built environment affects physical activity: Views from urban planning[J].American Journal of Preventive Medicine, 2002, 23(2): 64-73. [37] EWING R, CERVERO R. Travel and the built environment: A synthesis[J].Journal of the Transportation Research Record, 2001, 1780(1): 87-114. [38] 罗雯,匡耀求,周敏丹,等.商圈功能多样性对其活力的影响研究[J].地球信息科学学报,2021,23(7):1259-1271. LUO Wen, KUANG Yaoqiu, ZHOU Mingdan, et al. Research on the influence of functional diversity of business district on its vitality: A case study of Guangzhou[J]. Journal of Geo-information Science, 2021, 23(7): 1259-1271. [39] PAVELESCU F M. Features of the ordinary least square (OLS) method: Implications for the estimation methodology[J].Journal for Economic Forecasting, 2004, 1(2): 85-101. [40] FOTHERINGHAM A S, CHARLTON M E, BRUNSDON C. Geo-graphically weighted regression: A natural evolution of the expansion method for spatial data analysis[J].Environment and Planning(A), 1998, 30(11): 1905-1927. [41] LI Aoyong, ZHAO Pengxiang, HUANG Yizhe, et al. An empirical analysis of dockless bike-sharing utilization and its explanatory factors: Case study from Shanghai, China[J]. Journal of Transport Geography, 2020, 88: 1-15. [42] FOTHERINGHAM A S, YANGWenbai, KANG Wei. Multiscale geographically weighted regression(MGWR)[J]. Annals of the American Association of Geographers, 2017, 107(6): 1247-1265. [43] 古扎拉蒂 D N, 波特 D C.计量经济学基础:第5版[M].费剑平,译.北京:中国人民大学出版社,2011. GUJARATI D N, PORTER D C.Basic Econometrics: 5th ed[M]. FEI Jianping, Translate. Beijing:China Renmin University Press, 2011. [44] ELEDUM H. Leverage and influential observations on the Liu type estimator in the linear regression model with the severe collinearity[J].Heliyon, 2021, 7(8): 1-15. |
[1] | 李振龙, 董爱华, 杨磊. 基于群决策和熵权法的换道轨迹评价研究[J]. 重庆交通大学学报(自然科学版), 2023, 42(1): 120-127. |
[2] | 焦柳丹1,朱影含1,吴雅2,宋向南3. 基于演化博弈理论的城市轨道交通高峰票价定价研究[J]. 重庆交通大学学报(自然科学版), 2021, 40(08): 42-49. |
[3] | 查伟雄,冯涛,严利鑫. 考虑车辆到达时间窗的应急公交调度优化模型[J]. 重庆交通大学学报(自然科学版), 2021, 40(08): 57-62. |
[4] | 王涛1,谢思红1,黎文皓1,2,李文勇1. 基于FFOS-ELM和PF的短时交通流自适应预测模型[J]. 重庆交通大学学报(自然科学版), 2021, 40(06): 21-27. |
[5] | 郑义彬,蔡航鹏,赖伟伟,刘冠宇. 基于复杂网络的湖北省高速公路网特性分析[J]. 重庆交通大学学报(自然科学版), 2021, 40(05): 31-37. |
[6] | 吴文静,孙刃超,宗芳,贾洪飞. 居民低碳通勤出行的主观态度识别及影响分析[J]. 重庆交通大学学报(自然科学版), 2021, 40(05): 53-58. |
[7] | 李岩1,南斯睿2,胡文斌3,汪帆1,陈宽民1. 机非标线分隔道路电动自行车越线风险模型[J]. 重庆交通大学学报(自然科学版), 2021, 40(02): 13-20. |
[8] | 裴同松1,裴彧2. 基于马尔科夫链-BP神经网络模型对公路运量的预测研究[J]. 重庆交通大学学报(自然科学版), 2021, 40(02): 35-41. |
[9] | 常四铁,严飞,左康. 出行者对出行方式服务属性的感知差异研究[J]. 重庆交通大学学报(自然科学版), 2021, 40(02): 42-46. |
[10] | 蒋劲羽1,赵旭1,李铖钰1,杨忠振2. 农村公路治超站选址与治超车路径优化研究[J]. 重庆交通大学学报(自然科学版), 2021, 40(02): 61-68. |
[11] | 任其亮,张丽莉,吴玲玲. 城市组团间居民出行方式选择决策方法[J]. 重庆交通大学学报(自然科学版), 2021, 40(01): 36-43. |
[12] | 黄益绍1,2,韩磊2,3. 基于RS-IPSOSVM的公交客流量预测方法[J]. 重庆交通大学学报(自然科学版), 2020, 39(11): 11-19. |
[13] | 翁小雄,郝翊. 基于LSTM引入客车占比特征的短时交通流预测[J]. 重庆交通大学学报(自然科学版), 2020, 39(11): 20-25. |
[14] | 邬岚,王彤伟,李鹏举,翟伟. 基于窄马路理念的车道缩减设计方法[J]. 重庆交通大学学报(自然科学版), 2020, 39(11): 26-32. |
[15] | 肖梅1,徐福博1,边浩毅2,颜建强3. 基于多项Logit模型的候车时间价值估计[J]. 重庆交通大学学报(自然科学版), 2020, 39(10): 24-30. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||