[1] LIU Yiwei, ZHANG Zuhua, SHI Caijun, et al. Development of ultra-high performance geopolymer concrete (UHPGC): Influence of steel fiber on mechanical properties[J]. Cement and Concrete Composites, 2020, 112: 103670.
[2] SHI Caijun, BO Qu, PROVIS J L. Recent progress in low-carbon binders[J].Cement and Concrete Research, 2019, 122: 227-250.
[3] SHI Zhenguo, SHI Caijun, SHU Wan, et al. Effect of alkali dosage and silicate modulus on carbonation of alkali-activated slag mortars[J].Cement and Concrete Research, 2018, 113: 55-64.
[4] LIU Yiwei, SHI Caijun, ZHANG Zuhua, et al. An overview on the reuse of waste glasses in alkali-activated materials[J].Resources, Conservation and Recycling, 2019, 144: 297-309.
[5] 尹明, 白洪涛, 周吕. 粉煤灰地质聚合物混凝土的强度特性[J]. 硅酸盐通报, 2014, 33(10): 2723-2727.
YIN Ming, BAI Hongtao, ZHOU Lyu. Strength properties of fly ash geopolymer concrete[J].Bulletin of the Chinese Silicate Society, 2014, 33(10): 2723-2727.
[6] NADOUSHAN M J, RAMEZANIANPOUR A A. The effect of type and concentration of activators on flowability and compressive strength of natural pozzolan and slag-based geopolymers[J].Construction and Building Materials, 2016, 111: 337-347.
[7] 宋天诣, 曲星宇, 潘竹. 地聚物的耐高温性能研究进展[J]. 材料导报, 2023, 37(8): 246-254.
SONG Tianzhi, QU Xingyu, PAN Zhu. Research progress on high temperature resistance of geopolymer[J].Materials Reports, 2023, 37(8): 246-254.
[8] JUNAID M T, KHENNANE A, KAYALI O, et al. Aspects of the deformational behavior of alkali activated fly ash concrete at elevated temperatures[J].Cement and Concrete Research, 2014, 60: 24-29.
[9] LI Ning, FARZADNIA N, SHI Caijun. Microstructural changes in alkali-activated slag mortars induced by accelerated carbonation[J].Cement and Concrete Research, 2017, 100: 214-226.
[10] ZHANG Jian, SHI Caijun, ZHANG Zuhua, et al. Durability of alkali-activated materials in aggressive environments: A review on recent studies[J].Construction and Building Materials, 2017, 152: 598-613.
[11] 金漫彤, 陈颖, 董海丽. 飞灰基地聚合物固化体耐硫酸盐侵蚀性能研究[J]. 浙江工业大学学报, 2013, 41(6): 596-600.
JIN Mantong, CHEN Ying, DONG Haili.Study on sulfate resistance of solidified fly ash based geopolymer[J] Journal of Zhejiang University of Technology, 2013, 41 (6): 596-600.
[12] DUAN Ping, YAN Chunjie, ZHOU Wei, et al. Fresh properties, mechanical strength and microstructure of fly ash geopolymer paste reinforced with sawdust[J].Construction and Building Materials, 2016, 111: 600-610.
[13] ZHAO Mengxuan, ZHANG Guoping, HTET K W, et al. Freeze-thaw durability of red mud slurry-class F fly ash-based geopolymer: Effect of curing conditions[J].Construction and Building Materials, 2019, 215: 381-390.
[14] ZHAO Renda, YUAN Yuan, CHENG Zhengqing, et al. Freeze-thawresistance of class F fly ash-based geopolymer concrete[J]. Construction and Building Materials, 2019, 222: 474-483.
[15] NATH P, SARKER P K. Flexural strength and elastic modulus of ambient-cured blended low-calcium fly ash geopolymer concrete[J].Construction and Building Materials, 2017, 130: 22-31.
[16] LEE N K, LEE H K. Setting and mechanical properties of alkali-activated fly ash/slag concrete manufactured at room temperature[J].Construction and Building Materials, 2013, 47: 1201-1209.
[17] THOMAS R J, PEETHAMPARAN S. Alkali-activated concrete: Engineering properties and Stress-strain behavior[J].Construction and Building Materials, 2015, 93: 49-56.
[18] Al-MAJIDI M H, LAMPROPOULOS A, CUNDY A B. Tensile property of a novel fiber reinforced geopolymer composite with enhanced strain hardening characteristics [J]. Composite Structures, 2017, 168: 402-427.
[19] HU Xiang, SHI Caijun, ZHANG Zuhua, et al. Autogenous and drying shrinkage of alkali-activated slag mortars[J].Journal of the American Ceramic Society, 2019, 102(8): 4963-4975.
[20] GAO XIAO, YU QINGLING, BROUWERS H J H. Assessing the porosity and shrinkage of alkali activated slag-fly ash composites designed applying a packing model[J].Construction and Building Materials, 2016, 119: 175-184.
[21] 毛宇光, 刘钰中, 杜运兴, 等. 梁纵筋黏结状况对矿渣地聚物混凝土梁柱中节点抗震性能的影响[J]. 重庆交通大学学报(自然科学版), 2022, 41(11): 89-98.
MAO Yuguang, LIU Yuzhong, DU Yunxing, et al. Effect of bond condition of beam longitudinal bars on seismic performance of geopolymer concrete interior beam-column joints[J].Journal of Chongqing Jiaotong University(Natural Science), 2022, 41(11): 89-98.
[22] PRINSSE S, HORDIJK D A, YE G, et al. Time-dependent material properties and reinforced beams behavior of two alkali-activated types of concrete[J]. Structural Concrete, 2020, 21(2): 642-658.
[23] MONFARDINI L, MINELLI F. Experimental study on full-scale beams made by reinforced alkali activated concrete undergoing flexure[J].Materials, 2016, 9(9): 739-749.
[24] DATTATREYA J K, RAJAMANE N P, SABITHA D, et al. Flexural behavior of reinforced Geopolymer concrete beams[J].International Journal of Civil & Structural Engineering, 2011, 2(1): 138-150.
[25] ALEX A G, GEBREHIWET T, KEMAL Z, et al. Structural performance of low-calcium fly ash geopolymer reinforced concrete beam[J]. Iranian Journal of Science and Technology, Transactions of Civil Engineering, 2022: 1-12.
[26] LEE K M, CHOI S, CHOO J F, et al. Flexural and shear behaviors of reinforced alkali-activated slag concrete beams[J].Advances in Materials Science and Engineering, 2017, 5294290.
[27] DQP A, TNN B, STL B, et al. The structural behaviors of steel reinforced geopolymer concrete beams: An experimental and numerical investigation[J].Structures, 2021, 33: 567-580.
[28] HUTAGI A, KHADIRANAIKAR R B. Flexural behavior of reinforced geopolymer concrete beams[C]//2016 International Conference on Electrical, Electronics, and Optimization Techniques (ICEEOT). IEEE, 2016: 3463-3467.
[29] DU Yunxing, WANG Jia, SHI Caijun, et al. Flexural behavior of alkali-activated slag-based concrete beams[J].Engineering Structures, 2021, 229: 111644.
[30] YOST J R, RADLIN'SKA A, ERNST S, et al. Structural behavior of alkali activated fly ash concrete. Part 2: structural testing and experimental findings[J].Materials and Structures, 2013, 46(3): 449-462.
[31] AYENSA A, OLLER E, B BELTRN, et al. Influence of theflanges width and thickness on the shear strength of reinforced concrete beams with T-shaped cross section[J]. Engineering Structures, 2019, 188: 506-518.
[32] THAMRIN R, TANJUNG J, ARYANTI R, et al. Shear strength of reinforced concrete T-beams without stirrups[J].Journal of Engineering Science and technology, 2016, 11(4): 548-562.
[33] 刘立新. 混凝土结构基本原理[M]. 武汉:武汉理工大学出版社, 2004: 65-66.
LIU Lixin.Basic Principle of Concrete Structure[M]. Wuhan: Wuhan University of Technology Press, 2004: 65-66.
[34] NAAMAN A E. Rectangular stress block and T-section behavior[C]//Open Forum: Problems and Solutions, PCI Journal, 2002, 47(5): 106-112.
[35] SEGUIRANT S J, BRICE R, KHALEGHI B. Flexural strength of reinforced and prestressed concrete T-beams[J].PCI Journal, 2005, 50(1):44-73.
[36] CONG Xinyu, ZHOU Wei, ELCHALAKANI M. Experimental study on the engineering properties of alkali-activated GGBFS/FA concrete and constitutive models for performance prediction[J].Construction and Building Materials, 2020, 240: 117977.
[37] ACI Committee 318.Building Code Requirements for Structural Concrete: ACI 318—19[S]. Farmington Hills, M I: American Concrete Institute, 2019. |