[1] LIU Shuying, LIU Shuo, TIAN Ye, et al. Research on forecast of rail traffic flow based on ARIMA model[J].Journal of Physics: Conference Series, 2021, 1792(1): 012065.
[2] 孟品超, 李学源, 贾洪飞, 等. 基于滑动平均法的轨道交通短时客流实时预测[J]. 吉林大学学报(工学版), 2018, 48(2): 448-453.
MENG Pinchao, LI Xueyuan, JIA Hongfei, et al. Short-time rail transit passenger flow real-time prediction based on moving average[J]. Journal of Jilin University (Engineering and Technology Edition), 2018, 48(2): 448-453.
[3] LIANG Shidong, MA Minghui, HE Shengxue, et al. Short-term passenger flow prediction in urban public transport: Kalman filtering combined K-nearest neighbor approach[J].IEEE Access, 1809, 7: 120937-120949.
[4] ROOS J, GAVIN G, BONNEVAY S. A dynamic Bayesian network approach to forecast short-term urban rail passenger flows with incomplete data[J].Transportation Research Procedia, 2017, 26: 53-61.
[5] 郇宁, 谢俏, 叶红霞, 等. 基于改进KNN算法的城轨进站客流实时预测[J]. 交通运输系统工程与信息, 2018, 18(5): 121-128.
HUAN Ning, XIE Qiao, YE Hongxia, et al. Real-timeforecasting of urban rail transit ridership at the station level based on improved KNN algorithm[J]. Journal of Transportation Systems Engineering and Information Technology, 2018, 18(5): 121-128.
[6] 谢臻, 郭建媛, 秦勇. 基于支持向量回归的地铁进站客流短时预测模型[J]. 都市快轨交通, 2020, 33(2): 82-86.
XIE Zhen, GUO Jianyuan, QIN Yong. Short-termprediction model of subway entry passenger flow based on support vector regression[J]. Urban Rapid Rail Transit, 2020, 33(2): 82-86.
[7] 惠阳, 王永岗, 彭辉, 等. 基于优化PSO-BP算法的耦合时空特征下地铁客流预测[J]. 交通运输工程学报, 2021, 21(4): 210-222.
HUI Yang, WANG Yonggang, PENG Hui, et al. Subway passenger flow prediction based on optimized PSO-BP algorithm with coupled spatial-temporal characteristics[J].Journal of Traffic and Transportation Engineering, 2021, 21(4): 210-222.
[8] MA Xiaolei, DAI Zhuang, HE Zhengbing, et al. Learning traffic as images: A deep convolutional neural network for large-scale transportation network speed prediction[J].Sensors, 2017, 17(4): 818. DOI: 10.3390/s17040818.
[9] YANG Xin, XUE Qiuchi, DING Meiling, et al. Short-term prediction of passenger volume for urban rail systems: A deep learning approach based on smart-card data[J].International Journal of Production Economics, 2021, 231: 107920.
[10] LI Wei, SUI Liying, ZHOU Min, et al. Short-term passenger flow forecast for urban rail transit based on multi-source data[J].EURASIP Journal on Wireless Communications and Networking, 2021, 2021(1): 1-13.
[11] 赵阳阳, 夏亮, 江欣国. 基于经验模态分解与长短时记忆神经网络的短时地铁客流预测模型[J]. 交通运输工程学报, 2020, 20(4): 194-204.
ZHAO Yangyang, XIA Liang, JIANG Xinguo. Short-term metro passenger flow prediction based on EMD-LSTM[J].Journal of Traffic and Transportation Engineering, 2020, 20(4): 194-204.
[12] 王秋雯, 陈彦如, 刘媛春. 基于卷积长短时记忆神经网络的城市轨道交通短时客流预测[J]. 控制与决策, 2021, 36(11): 2760-2770.
WANG Qiuwen, CHEN Yanru, LIU Yuanchun. Metro short-term traffic flow prediction with ConvLSTM[J].Control and Decision, 2021, 36(11): 2760-2770.
[13] 朱志浩. 基于集成学习的城市轨道交通进出站客流短时预测研究[D]. 成都: 西南交通大学, 2020.
ZHU Zhihao.Short-Term Prediction on Entrance and Exit Passenger Flow of Urban Rail Transit Station by Ensemble Learning[D]. Chengdu: Southwest Jiaotong University, 2020.
[14] 王佳琳. 基于深度学习模型的城市轨道交通短时客流预测方法研究[D]. 北京: 北京交通大学, 2020.
WANG Jialin.Research on Short-Term Passenger Flow Prediction Method of Urban Rail Transit Based on Deep Learning Model[D]. Beijing: Beijing Jiaotong University, 2020.
[15] LI Jing, PENG Hao, LIU Lin, et al. Graph CNNs for urban traffic passenger flows prediction[C]//2018 IEEE SmartWorld, Ubiquitous Intelligence & Computing, Advanced & Trusted Computing, Scalable Computing & Communications, Cloud & Big Data Computing, Internet of People and Smart City Innovation (Smart World/SCALCOM/UIC/ATC/CBDCom/IOP/SCI). Guangzhou, China. IEEE, 2018: 29-36.
[16] 许熳灵, 付晓, 汤君友, 等. 天气因素对城市地铁客流时空分布的影响——基于智能交通卡数据的实证研究[J]. 地理科学进展, 2020, 39(1): 45-55.
XU Manling, FU Xiao, TANG Junyou, et al. Effects of weather factors on the spatial and temporal distributions of metro passenger flows:An empirical study based on smart card data[J]. Progress in Geography, 2020, 39(1): 45-55.
[17] 侯晓云. 城市轨道交通线网短时OD客流预测研究[D]. 北京: 北京交通大学, 2020.
HOU Xiaoyun.Research on Short-Time Origin-Destination Passenger Flow Forecasting for Urban Rail Transit Network[D]. Beijing: Beijing Jiaotong University, 2020.
[18] 吴祥国, 张建嵩, 胡义良, 等. 重庆市轨道交通客流时间特性及影响因素探讨[J]. 铁道运输与经济, 2020, 42(11): 117-122.
WU Xiangguo, ZHANG Jiansong, HU Yiliang, et al. Atentative study on the time characteristic and influencing factors of urban rail passenger flow in Chongqing[J]. Railway Transport and Economy, 2020, 42(11): 117-122.
[19] 冯骥, 伍思雨, 王琛越. 基于因子分析与K-means聚类算法的P2P网贷平台风险评估模型[J]. 重庆师范大学学报(自然科学版), 2020, 37(5): 96-102.
FENG Ji, WU Siyu, WANG Chenyue. Peer-to-peer lending platform risk identification method based on factor analysis and K-means cluster algorithm[J]. Journal of Chongqing Normal University (Natural Science), 2020, 37(5): 96-102.
[20] NGUYEN T, NGUYEN G, NGUYEN B M. EO-CNN: An enhanced CNN model trained by equilibrium optimization for traffic transportation prediction[J].Procedia Computer Science, 2020, 176: 800-809.
[21] HE Kaiming, ZHANG Xiangyu, REN Shaoqing, et al. Deep residual learning for image recognition[C]//2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR). Las Vegas, N V, USA. IEEE, 2016: 770-778.
[22] HE Kaiming, ZHANG Xiangyu, REN Shaoqing, et al. Identity mappings in deep residual networks[C]//European Conference on Computer Vision. Cham: Springer, 2016: 630-645.
[23] 冯碧玉. 基于CNN-LSTM组合模型的城市轨道交通短时客流预测研究[D]. 南昌: 华东交通大学, 2020.
FENG Biyu.Short Term Passenger Flow Prediction of Urban Rail Transit Based on CNN-LSTM Combined Model[D]. Nanchang: East China Jiaotong University, 2020.
[24] LI Zhihong, XU Han, GAO Xiuli, et al. Fusion attention mechanism bidirectional LSTM for short-term traffic flow prediction[J].Journal of Intelligent Transportation Systems. DOI:10.1080/15472450.2022.2142049. |