中文核心期刊
CSCD来源期刊
中国科技核心期刊
RCCSE中国核心学术期刊

重庆交通大学学报(自然科学版) ›› 2024, Vol. 43 ›› Issue (2): 115-121.DOI: 10.3969/j.issn.1674-0696.2024.02.15

• 交通装备 • 上一篇    

基于自适应A*算法的自动驾驶车辆路径规划方法研究

张涌,成海飞,赵奉奎   

  1. (南京林业大学 汽车与交通工程学院,江苏 南京 210037)
  • 收稿日期:2022-11-10 修回日期:2023-08-16 发布日期:2024-03-01
  • 作者简介:张 涌(1971—),男,江苏扬州人,教授,博士,主要从事节能与新能源汽车控制,智能车底盘线控方面的研究。E-mail:zy.js@163.com 通信作者:赵奉奎(1986—),男,山东济宁人,讲师,博士,主要从事智能车辆环境感知,计算机视觉方面的研究。E-mail:zfk@njfu.edu.cn
  • 基金资助:
    江苏省产业前瞻与关键核心技术项目(BE2022053-2);江苏省重点研发计划项目(BE2021339);南京林业大学青年科技创新基金项目(CX2019018)

Path Planning Method of Autonomously Driving Vehicle Based on Adaptive A* Algorithm

ZHANG Yong, CHENG Haifei, ZHAO Fengkui   

  1. (School of Automobile and Traffic Engineering, Nanjing Forestry University, Nanjing 210037, Jiangsu, China)
  • Received:2022-11-10 Revised:2023-08-16 Published:2024-03-01

摘要: 应用传统A*算法进行路径规划时,存在拐点过多、搜索效率较差、转折角度过大等问题,提出一种基于自适应A*算法的自动驾驶车辆路径规划算法。首先,针对传统A*算法运算时间较长的问题,采用指数增长法对启发式函数进行加权,从而提高搜索效率;然后,在启发函数中引入航向角影响因子,使自动驾驶车辆在工作时满足其转向特性;最后,通过三次B样条插值函数对路径中拐点处进行平滑处理,使拐点处尖角的局部路径更加平滑。MATLAB仿真结果表明:改进A*算法生成的路径在长度、总航向角和曲线平滑方面的性能指标优于传统A*算法,使自动驾驶车辆获得一条满足自身约束的优质路径,且在不同的地图环境下,提出的自适应A*算法能够适应不同的环境且可以有效地保持其可行性与优越性。

关键词: 车辆工程; A*算法;路径规划;自动驾驶

Abstract: When using the traditional A* algorithm for path planning, there are problems such as too many turning points, poor search efficiency and too large turning angle. Therefore, a path planning algorithm for autonomously driving vehicles based on the adaptive A* algorithm was proposed. First of all, in view of the long operation time of the traditional A* algorithm, the exponential growth method was used to weight the heuristic function, so as to improve the search efficiency. Then, the heading angle influence factor was introduced into the heuristic function, so that autonomously driving vehicles could meet the steering characteristics when working. Finally, through the cubic B-spline interpolation function, the inflection point in the path was smoothed, so that the local path with sharp corners at the inflection point is smoother. The MATLAB simulation results show that the performance indexes of the path generated by the improved A* algorithm are better than those of the traditional A* algorithm in terms of length, total heading angle and curve smoothness, so that the autonomously driving vehicle can obtain a high-quality path that satisfies its own constraints. Moreover, under different map environments, the proposed adaptive A* algorithm can adapt to different environments and can effectively maintain its feasibility and superiority.

Key words: vehicle engineering; A* algorithm; path planning; autopilot

中图分类号: