[1] ZHAO Ling, SONG Yujiao, ZHANG Chao, et al. T-GCN: A temporal graph convolutional network for traffic prediction[J]. IEEE Transactions on Intelligent Transportation Systems, 2020, 21(9): 3848-3858.
[2] REN Gang, ZHOU Zhuping. Traffic safety forecasting method by particle swarm optimization and support vector machine[J]. Expert Systems with Applications, 2011, 38(8): 10420-10424.
[3] XUE Jieni, SHI Zhongke. Short-time traffic flow prediction based on chaos time series theory[J]. Journal of Transportation Systems Engineering and Information Technology, 2008, 8(5): 68-72.
[4] ZHANG Jinlei, CHEN Feng, CUI Zhiyong, et al. Deep learning architecture for short-term passenger flow forecasting in urban rail transit[J]. IEEE Transactions on Intelligent Transportation Systems, 2021, 22(11): 7004-7014.
[5] 殷礼胜, 魏帅康, 孙双晨, 等. 基于FEEMD-SAPSO-BiLSTM组合模型的短时交通流预测[J]. 电子测量与仪器学报, 2021, 35(10): 72-81.
YIN Lisheng, WEI Shuaikang, SUN Shuangchen, et al. Short-term traffic flow forecast based on FEEMD-SAPSO-BiLSTM combined model[J].Journal of Electronic Measurement and Instrumentation, 2021, 35(10): 72-81.
[6] ZHENG Jianhu, HUANG Mingfang. Traffic flow forecast through time series analysis based on deep learning[J]. IEEE Access, 2020, 8: 82562-82570.
[7] LIU Hui, ZHANG Xinyu, YANG Yuxiang, et al. Hourly traffic flow forecasting using a new hybrid modelling method[J]. Journal of Central South University, 2022, 29(4): 1389-1402.
[8] ZHENG Haifeng, LIN Feng, FENG Xinxin, et al. A hybrid deep learning model with attention-based conv-LSTM networks for short-term traffic flow prediction[J]. IEEE Transactions on Intelligent Transportation Systems, 2021, 22(11): 6910–6920.
[9] CHEN Chen, LIU Ziye, WAN Shaohua, et al. Traffic flow prediction based on deep learning in Internet of vehicles[J]. IEEE Transactions on Intelligent Transportation Systems, 2021, 22(6): 3776-3789.
[10] ZHAO Leina, WEN Xinyu, WANG Yanpeng, et al. A novel hybrid model of ARIMA-MCC and CKDE-GARCH for urban short-term traffic flow prediction[J]. IET Intelligent Transport Systems, 2022, 16(2): 206-217.
[11] WANG Yibing, LI Dong, DU Yi, et al. Anomaly detection in traffic using L1-norm minimization extreme learning machine[J]. Neurocomputing, 2015, 149: 415-425.
[12] WANG Jian, LU Siyuan, WANG Shuihua, et al. A review on extreme learning machine[J]. Multimedia Tools and Applications, 2022, 81(29): 41611-41660.
[13] LI Ning, HU Lang, DENG Zhongliang, et al. Research on GRU neural network satellite traffic prediction based on transfer learning[J]. Wireless Personal Communications, 2021, 118(1): 815-827.
[14] 焦朋朋, 安玉, 白紫秀, 等. 基于XGBoost的短时交通流预测研究[J]. 重庆交通大学学报(自然科学版), 2022, 41(8): 17-23.
JIAO Pengpeng, AN Yu, BAI Zixiu, et al. Short-term traffic flow forecasting based on XGBoost[J]. Journal of Chongqing Jiaotong University (Natural Science), 2022, 41(8): 17-23.
[15] TANG Jinjun, ZENG Jie. Spatiotemporal gated graph attention network for urban traffic flow prediction based on license plate recognition data[J]. Computer-Aided Civil and Infrastructure Engineering, 2022, 37(1): 3-23.
[16] ZHUANG Weiqing, CAO Yongbo. Short-term traffic flow prediction based on CNN-BILSTM with multicomponent information[J]. Applied Sciences, 2022, 12(17): 8714.
[17] ZHANG Yang, XIN Dongrong. A diverse ensemble deep learning method for short-term traffic flow prediction based on spatiotemporal correlations[J]. IEEE Transactions on Intelligent Transportation Systems, 2022, 23(9): 16715-16727. |