[1] 张阳, 廖晓烨, 杨书敏, 等. 一种结构优化的深度信任网络短时交通流预测[J]. 重庆交通大学学报(自然科学版), 2023, 42(11): 126-133.
ZHANG Yang, LIAO Xiaoye, YANG Shumin, et al. Short-term traffic flow prediction with structure-optimized deep belief network[J]. Journal of Chongqing Jiaotong University(Natural Science), 2023, 42(11): 126-133.
[2] DENG Lei, LIU Xiaoyang, ZHENG Haifeng, et al. Graph spectral regularized tensor completion for traffic data imputation[J]. IEEE Transactions on Intelligent Transportation Systems, 2022, 23(8): 10996-11010.
[3] EL FAOUZI N E, LEUNG H, KURIAN A. Data fusion in intelligent transportation systems: progress and challenges: A survey[J]. Information Fusion, 2011, 12(1): 4-10.
[4] ZHANG Xinyu, ZHANG Yong, WEI Xiulan, et al. Traffic forecasting with missing data via low rank dynamic mode decomposition of tensor[J]. IET Intelligent Transport Systems, 2022, 16(9): 1164-1176.
[5] LIN Kaitong, ZHENG Haifeng, FENG Xinxin, et al. A novel spatial-temporal regularized tensor completion algorithm for traffic data imputation[C]// 2018 10th International Conference on Wireless Communications and Signal Processing (WCSP). Hangzhou, China. IEEE, 2018: 1-6.
[6] ZHU Yanmin, LI Zhi, ZHU Hongzi, et al. A compressive sensing approach to urban traffic estimation with probe vehicles[J]. IEEE Transactions on Mobile Computing, 2013, 12(11): 2289-2302.
[7] QU Li, LI Li, ZHANG Yi, et al. PPCA-based missing data imputation for traffic flow volume: A systematical approach[J]. IEEE Transactions on Intelligent Transportation Systems, 2009, 10(3): 512-522.
[8] LI Li, LI Yuebiao, LI Zhiheng. Efficient missing data imputing for traffic flow by considering temporal and spatial dependence[J]. Transportation Research Part C: Emerging Technologies, 2013, 34: 108-120.
[9] YU Jingru, STETTLER M E J, ANGELOUDIS P, et al. Urban network-wide traffic speed estimation with massive ride-sourcing GPS traces[J]. Transportation Research Part C: Emerging Technologies, 2020, 112: 136-152.
[10] CHEN Xinyu, HE Zhaocheng, SUN Lijun. A Bayesian tensor decomposition approach for spatiotemporal traffic data imputation[J]. Transportation Research Part C: Emerging Technologies, 2019, 98: 73-84.
[11] TAN Huachun, FENG Guangdong, FENG Jianshuai, et al. A tensor-based method for missing traffic data completion[J]. Transportation Research Part C: Emerging Technologies, 2013, 28: 15-27.
[12] CARROLL J D, CHANG J J. Analysis of individual differences in multidimensional scaling via an n-way generalization of “Eckart-Young” decomposition[J]. Psychometrika, 1970, 35(3): 283-319.
[13] TUCKER L R. Implications of factor analysis of three-way matrices for measurement of change[J]. Problems in Measuring Change, 1963, 15(3): 122-137.
[14] ACAR E, DUNLAVY D M, KOLDA T G, et al. Scalable tensor factorizations for incomplete data[J]. Chemometrics and Intelligent Laboratory Systems, 2011, 106(1): 41-56.
[15] TAN Huachun, FENG Jianshuai, CHEN Zhengdong, et al. Low multilinear rank approximation of tensors and application in missing traffic data[J]. Advances in Mechanical Engineering, 2014, 6: 157597.
[16] 高志军, 刘懿如, 王江锋, 等. 基于梯度下降 Tucker 分解的高速公路数据质量控制算法[J]. 北京交通大学学报, 2019, 43(6): 50-55.
GAO Zhijun, LIU Yiru, WANG Jiangfeng, et al. Data quality control algorithm for freeway based on gradient descent Tucker decomposition[J]. Journal of Beijing Jiaotong University(Natural Science), 2019, 43(6): 50-55.
[17] LIU Ji, MUSIALSKI P, WONKA P, et al. Tensor completion for estimating missing values in visual data[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2013, 35(1): 208-220.
[18] HU Yao, ZHANG Debing, YE Jieping, et al. Fast and accurate matrix completion via truncated nuclear norm regularization[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2013, 35(9): 2117-2130.
[19] GU Shuhang, ZHANG Lei, ZUO Wangmeng, et al. Weighted nuclear norm minimization with application to image denoising[C]// 2014 IEEE Conference on Computer Vision and Pattern Recognition. Columbus, O H, USA. IEEE, 2014: 2862-2869.
[20] YAO Quanming, KWOK J T, WANG Taifeng, et al. Large-scale low-rank matrix learning with nonconvex regularizers[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2019, 41(11): 2628-2643.
[21] 教欣萍, 王江锋, 陈磊, 等. 基于HALRTC理论的短时交通流预测算法[J]. 山东科学, 2019, 32(6): 62-68.
JIAO Xinping, WANG Jiangfeng, CHEN Lei, et al. Short-term traffic flow prediction algorithm based on HALRTC theory[J]. Shandong Science, 2019, 32(6): 62-28.
[22] HUANG Longting, SO H C, CHEN Yuan, et al. Truncated nuclear norm minimization for tensor completion[C]// 2014 IEEE 8th Sensor Array and Multichannel Signal Processing Workshop (SAM). A Coruna, Spain. IEEE, 2014: 417-420.
[23] HAN Zifa, LEUNG C S, HUANG Longting, et al. Sparse and truncated nuclear norm-based tensor completion[J]. Neural Processing Letters, 2017, 45(3): 729-743.
[24] XUE Shengke, QIU Wenyuan, LIU Fan, et al. Low-rank tensor completion by truncated nuclear norm regularization[C]// 2018 24th International Conference on Pattern Recognition (ICPR). Beijing, China. IEEE, 2018: 2600-2605.
[25] CHEN Xinyu, YANG Jinming, SUN Lijun. A nonconvex low-rank tensor completion model for spatiotemporal traffic data imputation[J]. Transportation Research Part C: Emerging Technologies, 2020, 117: 102673.
[26] CHEN Xinyu, LEI Mengying, SAUNIER N, et al. Low-rank autoregressive tensor completion for spatiotemporal traffic data imputation[J]. IEEE Transactions on Intelligent Transportation Systems, 2022, 23(8): 12301-12310.
[27] NIE Tong, QIN Guoyang, SUN Jian. Truncated tensor Schatten p-norm based approach for spatiotemporal traffic data imputation with complicated missing patterns[J]. Transportation Research Part C: Emerging Technologies, 2022, 141: 103737.
[28] RAN Bin, TAN Huachun, WU Yuankai, et al. Tensor based missing traffic data completion with spatial-temporal correlation[J]. Physica A: Statistical Mechanics and Its Applications, 2016, 446: 54-63.
[29] 王涛,谢思红,黎文皓,等.基于FFOS-ELM和PF的短时交通流自适应预测模型[J].重庆交通大学学报(自然科学版), 2021, 40(6): 21-27.
WANG Tao, XIE Sihong, LI Wenhao, et al. Short-term traffic flow adaptive prediction model based on FFOS-ELM and PF[J]. Journal of Chongqing Jiaotong University(Natural Science), 2021, 40(6): 21-27.
[30] DISSANAYAKE B, HEMACHANDRA O, LAKSHITHA N, et al. A comparison of ARIMAX, VAR and LSTM on multivariate short-term traffic volume forecasting[C]// Conference of Open Innovations Association, FRUCT. FRUCT Oy, 2021(28): 564-570.
[31] CHEN Chenyi, WANG Yin, LI Li, et al. The retrieval of intra-day trend and its influence on traffic prediction[J]. Transportation Research Part C: Emerging Technologies, 2012, 22: 103-118. |