中文核心期刊
CSCD来源期刊
中国科技核心期刊
RCCSE中国核心学术期刊

重庆交通大学学报(自然科学版) ›› 2024, Vol. 43 ›› Issue (9): 78-85.DOI: 10.3969/j.issn.1674-0696.2024.09.10

• 交通+大数据人工智能 • 上一篇    

基于多头注意力时空图神经网络的交通流预测

肖琳1,2,陈洪超1,2,邹复民3   

  1. (1. 福建理工大学 计算机科学与数学学院,福建 福州 350118; 2. 福建省大数据挖掘与应用技术重点实验室, 福建 福州 350118; 3. 福建理工大学 电子电气与物理学院,福建 福州 350118)
  • 收稿日期:2024-01-25 修回日期:2024-04-03 发布日期:2024-09-25
  • 作者简介:肖琳(1980—),男,福建周宁人,副教授,博士,主要从事深度学习、投资策略方面的研究。E-mail:66246297@qq.com 通信作者:陈洪超(2001—),男,福建漳州人,硕士研究生,主要从事时空数据挖掘方面的研究。E-mail:chenhongchao2023@163.com
  • 基金资助:
    国家自然科学基金面上项目(62376059);福建省财政厅资助项目(GY-Z23012)

Traffic Flow Prediction Based on Multi-head Attention Spatiotemporal Graph Neural Network

XIAO Lin1, 2, CHEN Hongchao1, 2, ZOU Fuming3   

  1. (1. School of Computer Science and Mathematics, Fujian University of Technology, Fuzhou 350118, Fujian, China; 2. Fujian Provincial Key Laboratory of Big Data Mining and Application Technology, Fuzhou 350118, Fujian, China; 3. School of Electronic, Electrical Engineering and Physics, Fujian University of Technology, Fuzhou 350118, Fujian, China)
  • Received:2024-01-25 Revised:2024-04-03 Published:2024-09-25

摘要: 准确的交通预测对于智能交通系统(ITS)至关重要。然而,由于复杂的时间和空间依赖关系,现有的交通流预测方法未能有效捕获路网的时空特征,并且忽略了路网交通数据的相关性在空间维度和时间维度上表现出的较强动态性。为了进一步提高预测精度,提出了一种基于多头注意力的时空图神经网络模型。首先,该模型构造了一个自适应图结构学习组件,该自适应图结构学习组件可以有效地捕获图结构的动态时空相关性。其次,该模型基于注意力机制分别设计了时间多头注意力模块和空间多头注意力模块,所设计的时空多头注意力模块可以有效地对路网的时空特征进行提取。最后,利用堆叠的时空卷积层对未来的交通状况进行预测。在开源数据集上的实验结果表明:该模型在时空特征提取以及长期预测方面表现优异,并且比基线方法取得了更精确的预测结果。

关键词: 交通工程;交通预测;智能交通系统;时空多头注意力;图神经网络; 自适应图结构

Abstract: Accurate traffic prediction is pivotal for intelligent transportation systems (ITS). However, due to complex time and space dependencies, the existing traffic flow prediction methods have failed to effectively capture the spatiotemporal characteristics of the road network and also ignored the strong dynamic nature of the correlation of road network traffic data in both spatial and temporal dimensions. In order to furtherly improve the prediction accuracy, a spatiotemporal graph neural network model based on multi-head attention was proposed. Firstly, the proposed model constructed an adaptive graph structure learning component that could effectively capture the dynamic spatiotemporal correlation of the graph structure. Secondly, the proposed model respectively designed a temporal multi-head attention module and a spatial multi-head attention module, which were based on the attention mechanism. The designed spatiotemporal multi-head attention module could effectively extract the spatiotemporal features of the road network. Finally, the stacked spatiotemporal convolutional layers were used to predict the future traffic conditions. The results, derived from open-source datasets, demonstrate that the proposed model performs well in spatiotemporal feature extraction and long-term prediction, and achieves more accurate prediction results than baseline methods.

Key words: traffic engineering; traffic prediction; intelligent transportation system; spatiotemporal multi-head attention; graph neural network; adaptive graph structure

中图分类号: